

# Tomingley Gold Project

# Air Quality Assessment

September 2011

Prepared by

### **PAEHolmes**

Specialist Consultant Studies Compendium

Volume 2, Part 6

This page has intentionally been left blank



## Tomingley Gold Project

## Air Quality Assessment

| Prepared for: | R.W. Corkery & Co. Pty Limited |  |  |  |  |
|---------------|--------------------------------|--|--|--|--|
|               | 62 Hill Street                 |  |  |  |  |
|               | ORANGE NSW 2800                |  |  |  |  |

Tel: 02 6362 5411 Fax: 02 6361 3612 Email: orange@rwcorkery.com

On behalf of: Alkane Resources Ltd 65 Burswood Road BURSWOOD WA 6100

> Tel: 08 9328 9411 Fax: 08 9227 8178 Email: mail@alkane.com.au

Prepared by: PAEHolmes Suite 2B, 14 Glen Street EASTWOOD NSW 2575 Tel: 02 98748644 Fax: 02 98748904 Email: judith.cox@paeholmes.com

#### September, 2011

Report No. 616/06

#### COPYRIGHT

6 - 2

© PAEHolmes, 2011 and © Alkane Resources Ltd, 2011

All intellectual property and copyright reserved.

Apart from any fair dealing for the purpose of private study, research, criticism or review, as permitted under the Copyright Act, 1968, no part of this report may be reproduced, transmitted, stored in a retrieval system or adapted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise) without written permission. Enquiries should be addressed to PAE Holmes.

#### Page

| EX | ECUTIVE S | UMMARY                                          | 6-7  |
|----|-----------|-------------------------------------------------|------|
| 1  | INTRODUC  | TION                                            | 6-9  |
| 2  | LOCAL AR  | EA AND PROJECT DESCRIPTION                      |      |
| _  |           |                                                 |      |
| 3  | AIR QUALI | TY ASSESSMENT CRITERIA                          | 6-11 |
| 4  | CLIMATE A | ND METEOROLOGY                                  | 6-13 |
|    | 4.1       | LONG-TERM CLIMATE AVERAGES                      |      |
|    |           | 4.1.1 Data Source                               |      |
|    |           | 4.1.2 Temperature                               |      |
|    |           | 4.1.3 Relative Humidity                         |      |
|    |           | 4.1.4 Rainfall                                  |      |
|    | 4.2       | METEOROLOGICAL DATA                             |      |
|    |           | 4.2.1 Wind Speed and Direction                  |      |
|    |           | 4.2.2 Atmospheric Stability                     | 6-15 |
| 5  | EXISTING  | AIR QUALITY                                     | 6-16 |
|    | 5.1       | INTRODUCTION                                    | 6-16 |
|    | 5.2       | DUST DEPOSITION                                 | 6-17 |
|    | 5.3       | TSP CONCENTRATION                               | 6-17 |
|    | 5.4       | SUMMARY OF BACKGROUND DATA                      | 6-18 |
| 6  | APPROAC   | H TO ASSESSMENT                                 | 6-19 |
| 7  | ESTIMATE  | D EMISSIONS OF PARTICULATE MATTER               | 6-21 |
| 8  | ASSESSMI  | ENT OF IMPACTS                                  | 6-21 |
|    | 8.1       |                                                 | 6-21 |
|    | 0.1       | 8.1.1 Scenario 2 – End Year 1                   |      |
|    |           | 8.1.2 Scenario 3 – End Year 2                   |      |
|    |           | 8.1.3 Scenario 4 – End Year 4                   | 6-24 |
|    | 8.2       | PM10 24-HOUR CUMULATIVE IMPACTS                 | 6-25 |
| 9  | MITIGATIO | N MEASURES                                      | 6-29 |
|    | 9.1       | INTRODUCTION                                    | 6-29 |
|    | 9.2       | PROPOSED DUST MANAGEMENT AND CONTROL PROCEDURES | 6-29 |
| 10 | GREENHO   | USE GAS ASSESSMENT                              | 6-31 |
| 2  | 10.1      |                                                 |      |
|    | 10.2      | GREENHOUSE GAS ASSESSMENT POLICY SUMMARY        |      |
|    | 10.3      | GREENHOUSE GAS EMISSION ESTIMATES               |      |
|    | 10.0      | 10.3.1 Emission Factors                         |      |
|    |           | 10.3.2 Scope 1 Emissions                        |      |
|    |           | 10.3.2.1 Fuel Consumption                       | 6-34 |
|    |           | 10.3.2.2 ANFO Usage                             | 6-35 |

#### Page

| 10.3.3 Scope 2 Emissions<br>10.3.3.1 Electricity Consumption                                                                   | 6-36<br>6-36 |
|--------------------------------------------------------------------------------------------------------------------------------|--------------|
| 10.3.4 Scope 3 Emissions         10.3.4.1 Diesel Extraction and Transport         10.3.4.2 Generation of Purchased Electricity |              |
| 10.4 GREENHOUSE GAS EMISSIONS RESULTS                                                                                          | 6-38         |
| 11 CONCLUSIONS                                                                                                                 | 6-39         |
| 12 REFERENCES                                                                                                                  | 6-40         |

#### APPENDICES

Please note the Appendices are provided in full and in colour on the Project CD

| Appendix 1 | Joint Wind Speed, Wind Direction and Stability Class Frequency Tables | 6-83  |
|------------|-----------------------------------------------------------------------|-------|
| Appendix 2 | TSP and Dust Deposition Monitoring Data                               | 6-91  |
| Appendix 3 | Estimated Dust Emissions                                              | 6-101 |
| Appendix 4 | Example ISCMOD Input File                                             | 6-113 |
| Appendix 5 | Director-General's Requirements                                       | 6-129 |

#### FIGURES

Please note all Figures are provided in colour on the Project CD

| Figure 1:  | Locality Plan                                                                                                                      | 6-45  |
|------------|------------------------------------------------------------------------------------------------------------------------------------|-------|
| Figure 2:  | Pseudo 3D plot of local terrain                                                                                                    | 6-46  |
| Figure 3:  | Location of Sensitive Receptors                                                                                                    | 6-47  |
| Figure 4:  | Mine Site Layout                                                                                                                   | .6-48 |
| Figure 5:  | Wind Rose for Peak Hill Mine Site (Alkane operated) Meteorological Station, 2003                                                   | .6-49 |
| Figure 6:  | Wind Rose for Toongi (Alkane operated) Meteorological Station, 2003                                                                | 6-50  |
| Figure 7:  | Wind Rose for Tomingley – TAPM generated, 2003                                                                                     | 6-51  |
| Figure 8:  | Wind Rose for Tomingley (TAPM) with Peak Hill (Alkane operated) observations, 2003                                                 | 6-52  |
| Figure 9:  | Location of Dust Deposition Monitors and High Volume Air Samplers (HVAS)                                                           | 6-53  |
| Figure 10: | High Volume Air Sampler (HVAS) TSP Concentrations                                                                                  | 6-54  |
| Figure 11: | Modelling Source Locations – Scenario 2                                                                                            | 6-55  |
| Figure 12: | Modelling Source Locations – Scenario 3                                                                                            | 6-56  |
| Figure 13: | Modelling Source Locations – Scenario 4                                                                                            |       |
| Figure 14: | Scenario 2 - Predicted 24-hour average $PM_{10}$ concentrations ( $\mu g/m^3$ ) due to emissions from the Project alone            | 6-58  |
| Figure 15: | Scenario 2 - Predicted annual average $PM_{10}$ concentrations ( $\mu g/m^3$ ) due to emissions from the Project alone             | 6-59  |
| Figure 16: | Scenario 2 - Predicted annual average TSP concentrations (µg/m <sup>3</sup> ) due to emissions from the Project alone              | 6-60  |
| Figure 17: | Scenario 2 - Predicted dust deposition levels (g/m <sup>2</sup> /month) due to emissions from the Project alone                    | 6-61  |
| Figure 18: | Scenario 2 - Predicted annual average $PM_{10}$ concentrations ( $\mu g/m^3$ ) due to emissions from the Project and other sources | 6-62  |

#### Page

| Figure 19: | Scenario 2 - Predicted annual average TSP concentrations (µg/m <sup>3</sup> ) due to emissions from the Project and other sources              |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 20: | Scenario 2 - Predicted dust deposition levels (g/m <sup>2</sup> /month) due to emissions from the Project and other sources                    |
| Figure 21: | Scenario 3 - Predicted 24-hour average PM <sub>10</sub> concentrations (µg/m <sup>3</sup> ) due to emissions from the Project alone            |
| Figure 22: | Scenario 3 - Predicted annual average PM <sub>10</sub> concentrations (µg/m <sup>3</sup> ) due to emissions from the Project alone             |
| Figure 23: | Scenario 3 - Predicted annual average TSP concentrations (µg/m <sup>3</sup> ) due to emissions from the Project alone                          |
| Figure 24: | Scenario 3 - Predicted dust deposition levels (g/m <sup>2</sup> /month) due to emissions from the Project alone                                |
| Figure 25: | Scenario 3 - Predicted annual average PM <sub>10</sub> concentrations (µg/m <sup>3</sup> ) due to emissions from the Project and other sources |
| Figure 26: | Scenario 3 - Predicted annual average TSP concentrations (µg/m <sup>3</sup> ) due to emissions from the Project and other sources              |
| Figure 27: | Scenario 3 - Predicted dust deposition levels (g/m <sup>2</sup> /month) due to emissions from the Project and other sources                    |
| Figure 28: | Scenario 4 - Predicted 24-hour average PM <sub>10</sub> concentrations (µg/m <sup>3</sup> ) due to emissions from the Project alone            |
| Figure 29: | Scenario 4 - Predicted annual average PM <sub>10</sub> concentrations (µg/m <sup>3</sup> ) due to emissions from the Project alone             |
| Figure 30: | Scenario 4 - Predicted annual average TSP concentrations (µg/m <sup>3</sup> ) due to emissions from the Project alone                          |
| Figure 31: | Scenario 4 - Predicted dust deposition concentrations (g/m <sup>2</sup> /month) due to emissions from the Project alone                        |
| Figure 32: | Scenario 4 - Predicted annual average PM <sub>10</sub> concentrations (µg/m <sup>3</sup> ) due to emissions from the Project and other sources |
| Figure 33: | Scenario 4 - Predicted annual average TSP concentrations (µg/m <sup>3</sup> ) due to emissions from the Project and other sources              |
| Figure 34: | Scenario 4 - Predicted dust deposition levels (g/m <sup>2</sup> /month) due to emissions from the Project and other sources                    |
| Figure 35: | Percentage frequency of incremental 24-hour PM <sub>10</sub> concentrations for sensitive receptors in Scenario 2                              |
| Figure 36: | Percentage frequency of incremental 24-hour PM <sub>10</sub> concentrations for sensitive receptors in Scenario 3                              |
| Figure 37: | Percentage frequency of 24-hour PM <sub>10</sub> concentrations for sensitive receptors in Scenario 46-80                                      |

#### Page

| TABLES      |                                                                                                                                          |      |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------|------|
| Table 3.1   | Air Quality Impact Assessment Criteria for Particulate Matter Concentrations                                                             | 6-12 |
| Table 3.2   | Advisory Reporting Standards for PM <sub>2.5</sub> Concentrations                                                                        | 6-12 |
| Table 3.3   | NSW DECCW Criteria for Dust (Insoluble Solids) Fallout                                                                                   | 6-12 |
| Table 4.1   | Temperature, Humidity and Rainfall Data for Peak Hill Post Office                                                                        | 6-13 |
| Table 4.2   | Summary of Meteorological Parameters used in this Study                                                                                  | 6-15 |
| Table 4.3   | Frequency of Atmospheric Stability Classes                                                                                               | 6-16 |
| Table 5.1   | Dust Deposition Monitoring Results (g/m <sup>2</sup> /month)                                                                             | 6-17 |
| Table 5.2   | TSP Monitoring Results (µg/m <sup>3</sup> )                                                                                              | 6-18 |
| Table 8.1   | Estimated Dust Emissions from the Tomingley Gold Project                                                                                 | 6-22 |
| Table 8.2   | Scenario 2 Model Predictions due to the Project Alone and the Project and Other Sources                                                  | 6-24 |
| Table 8.3   | Scenario 3 Model Predictions due to the Project Alone and the Project and Other Sources                                                  | 6-25 |
| Table 8.4   | Scenario 4 Model Predictions due to the Project Alone and the Project and Other Sources                                                  | 6-26 |
| Table 8.5   | 24-hour PM <sub>10</sub> Project Alone and Cumulative Results for Each Modelled Scenario (Using VEPA 70 <sup>th</sup> Percentile Method) | 6-28 |
| Table 9.1   | Best Practice Control Procedures for Wind-blown Dust                                                                                     |      |
| Table 9.2   | Best Practice Controls for mine-generated dust                                                                                           |      |
| Table 10.1  | Summary of Emission Factors for Greenhouse Gas Assessment                                                                                |      |
| Table 10.2  | Summary of On-site Diesel and LPG Usage                                                                                                  |      |
| Table 10.3  | Estimated (Scope 1) CO <sub>2</sub> -e Emissions from Consumption of Fuels on the Mine Site                                              | 6-35 |
| Table 10.4  | Summary of On-site ANFO Usage (t/y)                                                                                                      | 6-35 |
| Table 10.5  | Estimated (Scope 1) CO <sub>2</sub> -e Emissions from Explosives (ANFO) Use on the Mine Site                                             | 6-36 |
| Table 10.6  | Summary of Consumption of Purchased Electricity (GWh)                                                                                    | 6-36 |
| Table 10.7  | Estimated (Scope 2) CO <sub>2</sub> -e Emissions from Electricity Consumption                                                            | 6-37 |
| Table 10.8  | Estimated (Scope 3) CO <sub>2</sub> -e Emissions from the Extraction and Transport of Diesel                                             | 6-37 |
| Table 10.9  | Estimated (Scope 3) CO <sub>2</sub> -e Emissions from the Generation of Purchased Electricity Use                                        | 6-38 |
| Table 10.10 | Summary of Estimated CO <sub>2</sub> -e Emissions (t CO <sub>2</sub> -e/y)                                                               | 6-38 |
| Table 10.11 | Summary of Estimated Percentage Increase CO2-e Emissions (t CO2-e/y)                                                                     | 6-38 |

#### EXECUTIVE SUMMARY

6 - 7

This report has been prepared by PAEHolmes for R.W. Corkery & Co. Pty Limited on behalf of Alkane Resources Ltd. The purpose of the study is to assess the likely air quality impacts of the proposed Tomingley Gold Project ("the Project"), located in the central west of New South Wales. The proposed development would include four open cut mining operations, one underground mining operation, three waste rock emplacement areas, a residue storage facility and a processing plant, including a standard carbon-in-leach circuit.

The dust modelling results show that the predicted annual average  $PM_{10}$ , TSP and dust deposition levels at nearest sensitive receptors during all modelled scenarios would be below the NSW Office of Environment and Heritage (OEH) assessment criteria. When existing background levels are included, some receptors are predicted to receive 24-hour  $PM_{10}$  concentrations above the OEH assessment criterion.

A greenhouse gas assessment has been conducted using the National Greenhouse Accounts Factors. A project is required to report to the NGER system if it will emit greater than 25kt of greenhouse emissions. As such, the Project would be subject to the reporting under the system. For the life of the Project, it has been estimated that the development would release approximately 0.38Mt/y CO<sub>2</sub>-e (all scope emissions). The maximum annual increase of emissions would be in Years 1, 2 and 3 which would represent an approximate contribution of 0.04% (all scope emissions) to baseline 2008 NSW emissions.

Tomingley Gold Project Report No. 616/06

This page has intentionally been left blank

6 - 8

#### 1 INTRODUCTION

This report has been prepared by PAEHolmes for R.W. Corkery & Co. Pty Limited on behalf of Alkane Resources Ltd (Alkane). The purpose of this study is to assess the likely air quality impacts of the proposed Tomingley Gold Project (hereafter referred to as the Project) located in the Central West of New South Wales.

The Project incorporates three component activities, namely:

- the mining, processing and ancillary operations of "the Mine Site";
- the construction and operation of a water pipeline between the Mine Site and a borefield approximately 46km to the northeast near Narromine; and
- an electricity transmission line between the Mine Site and Peak Hill.

This report is restricted to an assessment of the activities on the Mine Site.

The Mine Site is centred on four gold ore bodies, located approximately 15km north of the Peak Hill Gold Mine (opened and operated by Alkane until 2006). The Mine Site would include four open cut mines, one underground mine, three waste rock emplacement areas, a residue storage facility and a processing plant, including a standard carbon-in-leach circuit.

In summary, this report provides information on (and assessment of):

- relevant air quality criteria;
- meteorological and climatic conditions in the area;
- the existing air quality conditions in the area;
- the methods used to estimate dust emissions from on-site activities;
- the expected dispersion and dust fallout patterns due to emissions from the Project and a comparison with the NSW Office of Environment and Heritage (OEH) assessment criteria; and
- greenhouse gas emissions attributable to the Project.

#### 2 LOCAL AREA AND PROJECT DESCRIPTION

The Project is located in the central west of New South Wales, immediately south of the village of Tomingley, approximately 53km to the southwest of Dubbo and approximately 15km to the north of Peak Hill (see **Figure 1**).

**Figure 2** shows the local terrain surrounding the Mine Site which is generally flat with few distinguishing features. The terrain does, however, become increasingly undulating towards the east.

The village of Tomingley lies to the immediate north of the Mine Site. There are twenty-nine sensitive receptors in the vicinity of the Mine Site as shown in **Figure 3**. The impact of emissions from the Project at these locations is specifically addressed.

The Project would include the following components (see Figure 4 for Mine Site layout).

- Establishment of infrastructure required for the Project, including a water supply pipeline, an underpass beneath the Newell Highway, and vegetated amenity bunds.
- Extraction of waste rock and ore material from four open cut areas, namely:
  - Caloma Open Cut (approximately 19ha);
  - Caloma Two Open Cut (indicative design approximately 9ha);
  - Wyoming Three Open Cut (approximately 10ha); and
  - Wyoming One Open Cut (approximately 19ha).

Friable waste rock and ore would be extracted using an excavator, or alternatively, ripped and pushed up using a bulldozer. This material would then be loaded into haul trucks for transportation to a waste rock emplacement or Run-of-Mine (ROM) pad. Drilling and blasting would be used to fracture harder rock and ore and would be similarly loaded and transported to a waste rock emplacement or the ROM pad.

- Extraction of waste rock and ore material from the Wyoming One Underground. All waste rock removed during underground mining operations would be re-used underground to backfill the mining stopes.
- Construction of three waste rock emplacements covering a combined area of approximately 129ha. Bulldozers would be used to shape and profile each waste rock emplacement.
- Construction and use of various haul roads and a run-of-mine (ROM) pad.
- Construction and use of a processing plant and office area, incorporating the ROM pad, crushing and grinding circuit, a standard carbon-in-leach (CIL) processing plant, site offices, workshops, ablutions facilities, stores, car parking, and associated infrastructure.

From the ROM pad, ore material would be sent through a crusher, then screened and then transported via a set of conveyors. Ore crushed to <23mm would be delivered to the surge bin for delivery to the gold extraction circuit. Oversize material would be delivered to a secondary crusher to further reduce the size of the material before delivery to the surge bin.

Material from the surge bin would be conveyed to the grinding circuit within the processing plant. The ore would be combined with water and steel balls with the revolving motion able to further reduce the size of the ore.

Following crushing and grinding, ore material would be processed to extract the gold. The remaining residue would then be pumped to the residue storage facility (RSF). The RSF would be designed and operated to ensure no significant pooling of process water on the surface.

- Construction and use of a residue storage facility (approximately 49ha).
- Construction and use of a transformer and electrical distribution network within the Mine Site (from the 20km of 66kV electricity transmission line from Peak Hill to the Mine Site to be constructed and operated under separate approval).

- Construction and use of an approximately 46km water pipeline, from a licensed bore located approximately 7km to the east of Narromine, to the Mine Site.
- Relocation of existing items of infrastructure, including a 22kV power line which currently passes over the area of the Caloma and Caloma Two Open Cuts.
- Re-routing (node to node) of a 4.2km section of a Nextgen Network fibre optic cable (telecommunications line).
- Construction and use of ancillary infrastructure, including the Main Site Access Road and intersection with Tomingley West Road.
- Construction of soil stockpiles (for use in rehabilitation works).
- Construction of the Eastern Surface Water Diversion Structure to divert surface water flows to the east of mining and waste rock emplacement activities. Additional surface water management structures would be constructed within the Project Site to control surface water flows within the Mine Site.
- Construction and use of dewatering ponds to store water accumulating in and pumped from the open cuts.

Disturbance associated with the mining and associated activities would be progressively rehabilitated to create a geotechnically stable final landform, suitable for a final land use of nature conservation, agriculture, tourism and/or light industry.

It is noted that the design of the proposed Caloma Two Open Cut is an indicative design only, with additional drilling required to further define the mineralisation. As a result, the indicative design for the Caloma Two Open Cut presented in this document represents the maximum area that would be developed. The development of this maximum impact footprint has been taken into account in all other aspects of the Project, including the required capacity, layout and design of the waste rock emplacements and residue storage facility, and the life of the Project. Approval is sought for the proposed design, acknowledging that the final design of the open cut would be the same size or smaller than that displayed on **Figure 4**.

In addition, throughout the life of the Project, the Proponent proposes to undertake additional exploration drilling to further identify mineralisation. Should further mineable mineralisation be identified, and once sufficient information is available to adequately identify the proposed activities, a subsequent application for approval to extract these resources may be prepared.

#### 3 AIR QUALITY ASSESSMENT CRITERIA

In the "Approved Methods and Guidance for the Modelling and Assessment of Air Pollutants in NSW" ("Approved Methods"), OEH specifies air quality assessment criteria relevant for assessing impacts from air pollution (**NSW DEC, 2005**).

**Table 3.1** summarises the air quality criteria for concentrations of particulate matter that are relevant to this study. The air quality criteria for Total Suspended Particulates (TSP) and airborne particulate matter <10 $\mu$ m in diameter (PM<sub>10</sub>) relate to the total dust burden in the air and not just the dust from the Project.

|             |                   | Table 3.1             |                           |
|-------------|-------------------|-----------------------|---------------------------|
| Air Quality | Impact Assessment | Criteria for Particul | ate Matter Concentrations |
| tent        | Averaging pariod  | Standard / Cool       | Aganay                    |

| Pollutant                                                                                               | Averaging period | Standard / Goal      | Agency                                                                                                                             |
|---------------------------------------------------------------------------------------------------------|------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Total suspended particulate matter (TSP)                                                                | Annual mean      | 90 μg/m <sup>3</sup> | NHMRC                                                                                                                              |
| Particulate matter with an<br>equivalent aerodynamic<br>diameter less than 10 μm<br>(PM <sub>10</sub> ) | 24-hour maximum  | 50 μg/m³             | NSW OEH impact assessment<br>criteria<br>NEPM reporting goal, allows five<br>exceedances per year for bushfires<br>and dust storms |
|                                                                                                         | Annual mean      | 30 μg/m <sup>3</sup> | NSW OEH impact assessment<br>criteria                                                                                              |

In other words, consideration of background dust levels needs to be made when using these criteria to assess potential impacts. This is discussed further in Section 5.4.

These criteria are consistent with the National Environment Protection Measures for Ambient Air Quality (referred to as the Ambient Air-NEPM) (see NEPC, 1998). However, the NSW DECCW's criteria include averaging periods, which are not included in the Ambient Air-NEPMs, and also references to other measures of air quality, namely dust deposition and total suspended particulate matter.

The National Environment Protection Council (NEPC) has also developed a set of NEPM advisory reporting standards goals for PM<sub>2.5</sub> as shown in Table 3.2 (NEPC, 2003). These goals have not been adopted in NSW for assessment of projects.

| Pollutant                    | Averaging period | Criteria | AGENCY |
|------------------------------|------------------|----------|--------|
| Particulate matter           | Annual mean      | 8μg/m³   | NEPM*  |
| < 2.5µm (PM <sub>2.5</sub> ) | 24-hour maximum  | 25µg/m³  | NEPM*  |

Table 3.2 Advisory Reporting Standards for PM<sub>2.5</sub> Concentrations

\*Not included as assessment criteria for projects in NSW

In addition to health impacts, airborne dust also has the potential to cause nuisance impacts by depositing on surfaces and/or on vegetation/crops.

**Table 3.3** shows the dust deposition criteria set out in the OEH procedures for modelling air pollutants from sources (**NSW DEC**, 2005).

| NSW OEH Criteria for Dust (Insoluble Solids) Fallout |                  |                                             |                                       |  |  |  |  |  |
|------------------------------------------------------|------------------|---------------------------------------------|---------------------------------------|--|--|--|--|--|
| Pollutant                                            | Averaging period | Maximum increase in<br>deposited dust level | Maximum total<br>deposited dust level |  |  |  |  |  |
| Deposited dust                                       | Annual           | 2g/m <sup>2</sup> /month                    | 4g/m <sup>2</sup> /month              |  |  |  |  |  |

Table 3.3

#### 4 CLIMATE AND METEOROLOGY

Meteorological conditions affect the dispersion of dust from an emissions source. This section describes the local meteorology and climatic conditions in the area that may influence dispersion.

#### 4.1 LONG-TERM CLIMATE AVERAGES

#### 4.1.1 Data Source

The closest Bureau of Meteorology (BOM) site that collects climatic information is at Peak Hill Post Office, approximately 15km south of the Mine Site. The data are summarised in **Table 4.1** which presents information on temperature, relative humidity, and rainfall (**Bureau of Meteorology, 2009**).

|                                                     | Jan       | Feb      | Mar       | Apr            | Мау       | Jun     | Jul        | Aug      | Sep     | Oct         | Nov       | Dec        | Annual |
|-----------------------------------------------------|-----------|----------|-----------|----------------|-----------|---------|------------|----------|---------|-------------|-----------|------------|--------|
| 9am Mean Temperature (°C) and Relative Humidity (%) |           |          |           |                |           |         |            |          |         |             |           |            |        |
| Dry-bulb                                            | 24.8      | 24.0     | 21.9      | 18.6           | 13.8      | 10.1    | 8.8        | 10.7     | 14.3    | 18.6        | 20.7      | 23.8       | 17.5   |
| Humidity                                            | 52        | 57       | 58        | 60             | 74        | 80      | 81         | 73       | 64      | 55          | 54        | 49         | 63     |
| 3pm Mean Temperature (°C) and Relative Humidity (%) |           |          |           |                |           |         |            |          |         |             |           |            |        |
| Dry-bulb                                            | 31.5      | 31.0     | 28.1      | 23.9           | 18.9      | 15.2    | 14.2       | 16.0     | 19.2    | 23.4        | 26.6      | 29.9       | 23.2   |
| Humidity                                            | 32        | 36       | 38        | 41             | 53        | 61      | 59         | 50       | 44      | 39          | 36        | 31         | 43     |
| Daily Max                                           | imum T    | empera   | ture (°C  | ;)             | •         | •       | •          | •        | •       | •           | •         |            |        |
| Mean                                                | 33.1      | 32.5     | 29.4      | 25.1           | 20.0      | 16.2    | 15.2       | 16.9     | 20.4    | 24.6        | 28.0      | 31.4       | 24.4   |
| Daily Min                                           | imum T    | empera   | ture (°C  | )              |           |         |            |          |         |             |           |            |        |
| Mean                                                | 19.1      | 19.2     | 16.3      | 12.2           | 8.8       | 6.0     | 4.7        | 5.8      | 7.9     | 11.4        | 14.2      | 17.2       | 11.9   |
| Rainfall (r                                         | nm)       |          |           |                |           |         |            |          |         |             |           |            |        |
| Monthly<br>mean -<br>mm                             | 59.6      | 50.0     | 49.2      | 42.2           | 45.2      | 42.6    | 44.5       | 43.4     | 37.6    | 48.5        | 47.2      | 49.2       | 559.3  |
| Rain days                                           | s (Numb   | er)      | •         |                | •         | •       | •          | •        | •       | •           | •         |            |        |
| Mean<br>no. of<br>rain<br>days                      | 5.0       | 4.6      | 4.4       | 4.3            | 5.7       | 7.1     | 7.2        | 6.9      | 6.0     | 6.2         | 5.2       | 5.0        | 67.6   |
| Station num                                         | nber: 050 | 031 Com  | nmenced   | 1890; La       | st record | May 200 | 9; Elevati | on: 285m | AHD; La | atitude: 32 | 2.72; Lon | gitude: 14 | 48.19  |
| Source: Bu                                          | reau of N | leteorol | ogy (2009 | <del>)</del> ) |           |         |            |          |         |             |           |            |        |

## Table 4.1 Temperature, Humidity and Rainfall Data for Peak Hill Post Office

#### 4.1.2 Temperature

On average, January is the warmest month with a mean daily maximum temperature of 33.1°C and July the coolest with a mean daily minimum of 4.7°C.

#### 4.1.3 Relative Humidity

Relative humidity is highest in July with 81% (observed at 9am), and the lowest in December at 31% (observed at 3pm).

#### 4.1.4 Rainfall

Mean annual rainfall is 559.3mm with the wettest month, on average, being January with a mean monthly rainfall of 59.6mm over five rain days. The driest month is September with a mean monthly rainfall of 37.6mm over six rain days.

#### 4.2 METEOROLOGICAL DATA

#### 4.2.1 Wind Speed and Direction

The dispersion model ISCMOD (a modified version of the US EPA ISCST3 model) used in this assessment requires a year of meteorological data. Data were provided by Alkane from the two meteorological stations closest to the Mine Site, namely, Peak Hill (15km south of the Mine Site) and Toongi (35km northeast of the Mine Site) (see **Figure 1**).

The Peak Hill station is owned and operated by Alkane and is located approximately 15km south of the Mine Site. A review of the Peak Hill data was conducted and 2003 was selected as the most representative year of meteorological data (personal communication with P. Zib, 2009).

Annual and seasonal wind roses for the Peak Hill Meteorological Station are presented in **Figure** 5. On an annual basis winds are predominantly from the south and also with a large portion of winds from the eastern quadrant. This pattern is evident in all seasons to different degrees. On an annual basis there are unusually high levels of calms (winds less than 0.5m/s) at 24.6%. This may be due to the station's proximity to a portable building and trees.

Alkane also owns and operates a meteorological station located in Toongi, approximately 35km northeast of the Mine Site. Data from the Toongi meteorological station for 2003 have been prepared into annual and seasonal wind roses as presented in **Figure 6**. When compared with the Peak Hill data, winds showed different patterns with small similarities. Annually, winds are predominantly from the south-southwest, south and the east-northeast and the northeast. On an annual basis there are 1% of calms. These differences between the two data sets may be due to Toongi meteorological station's distance from the Mine Site and the distinct contrast in topography. Therefore, the Toongi data were not considered representative of the meteorological conditions at the Mine Site and are considered inappropriate for use in the modelling.

Due to the high percentage of calms in the Peak Hill data, the approach taken in this assessment was to create a set of site-specific, synthetic meteorological data for the Tomingley site using The Air Pollution Model (TAPM) developed by CSIRO for 2003.

TAPM is a prognostic model which includes synoptic information determined from the six hourly Limited Area Prediction System (LAPS) (**Puri et al., 1997**). The model is discussed further in the user manual which accompanies the model (see **Hurley, 1999**).

A summary of the parameters used as part of the meteorological component of this study are shown in **Table 4.2**.

| ТАРМ (v. 4.0)             |                          |  |  |  |  |  |
|---------------------------|--------------------------|--|--|--|--|--|
| Number of grids (spacing) | 4 (30km, 10km, 3km, 1km) |  |  |  |  |  |
| Number of grid point      | 25 x 25 x 25             |  |  |  |  |  |
| Year of analysis          | Jan 2003 to Dec 2003     |  |  |  |  |  |
| Centre of analysis        | 32°37' S, 148°12' E      |  |  |  |  |  |

| Table 4.2                                               |
|---------------------------------------------------------|
| Summary of Meteorological Parameters used in this Study |

The TAPM meteorological data have been prepared into annual and seasonal wind roses as presented in **Figure 7**. On an annual basis, winds are predominantly from the northeast and east-northeast with fewer winds to the southwest. When compared with the Peak Hill data, winds show similar patterns, particularly the dominant winds from the eastern direction. However, on an annual basis the TAPM data shows 0.9% of calms which is distinctly different to 24.6% of calms annually in the Peak Hill data. TAPM has a tendency to under-predict low wind speeds and results in low levels of calms leading to under prediction of dust levels in near field regions.

Although the Peak Hill data show high levels of calms, as previously stated, it also shows similar wind patterns to the TAPM Tomingley data. Therefore TAPM was then run again in data assimilation mode with Peak Hill data included as observations. In this way, the meteorological data would include real world measurements adding a level of higher accuracy to the synthetic data.

The TAPM generated wind roses with observations are presented in **Figure 8**. The wind roses show the frequency of wind speeds and wind directions. On an annual basis the predominant winds are from the north and east. Winds from the east are less prominent in winter and spring with spring, also showing a higher percentage of winds from the south. The annual average wind speed is 1.8 m/s and on an annual basis there are 8.9% of calms.

#### 4.2.2 Atmospheric Stability

Gaussian dispersion models require information about the dispersion characteristics of the area. In particular, data are required on topography, wind speed, wind direction, atmospheric stability class<sup>1</sup> and mixing height<sup>2</sup>. Mixing height was determined using a scheme defined by **Powell** (1976) for day time conditions and an approach described by **Venkatram (1980)** for night time conditions.

To use the wind data to assess dispersion, it is necessary to also have available data on atmospheric stability. **Table 4.3** shows the frequency of occurrence of the stability categories from the 2003 TAPM data.

<sup>&</sup>lt;sup>1</sup> In dispersion modelling stability class is used to categorise the rate at which a plume will disperse. In the Pasquill-Gifford stability class assignment scheme, as used in this study, there are six stability classes A through to F. Class A relates to unstable conditions such as might be found on a sunny day with light winds. In such conditions plumes will spread rapidly. Class F relates to stable conditions, such as occur when the sky is clear, the winds are light and an inversion is present. Plume spreading is slow in these circumstances. The intermediate classes B, C, D and E relate to intermediate dispersion conditions.

<sup>&</sup>lt;sup>2</sup> The term mixing height refers to the height of the turbulent layer of air near the earth's surface into which ground-level emissions will be rapidly mixed. A plume emitted above the mixed-layer will remain isolated from the ground until such time as the mixed-layer reaches the height of the plume. The height of the mixed-layer is controlled mainly by convection (resulting from solar heating of the ground) and by mechanically generated turbulence as the wind blows over the rough ground.

| Pasquill Gifford stability class | Frequency (%) |
|----------------------------------|---------------|
| A                                | 15.3          |
| В                                | 12.5          |
| С                                | 9.6           |
| D                                | 40.3          |
| E                                | 9.8           |
| F                                | 12.6          |
| TOTAL                            | 100.1*        |

 Table 4.3

 Frequency of Atmospheric Stability Classes

\* Values do not add up to 100 exactly due to rounding.

The most common stability class for the Tomingley area was determined to be D-class at 35.4%. This would suggest that the dispersion conditions are such that dust emissions disperse rapidly for a significant proportion of the time. The frequency of E and F class conditions (slow dispersal conditions) was slightly lower at 31.8%.

Joint wind speed, wind direction and stability class frequency tables for the Tomingley site are presented in **Appendix 1**.

#### 5 EXISTING AIR QUALITY

#### 5.1 INTRODUCTION

Air quality criteria refer to pollutant levels which include sources attributable to Project activities as well as existing sources. To fully assess impacts against all the relevant air quality criteria (detailed in **Section 3**) it is necessary to have information or estimates on existing dust concentration and deposition levels in the vicinity of the Mine Site.

There are no NSW OEH air quality monitoring sites located close to the Mine Site. Dust monitoring has, however, been conducted by Alkane at a number of locations within Peak Hill, approximately 14km south of the Mine Site, and immediate surrounds. The stations have recorded measurements of dust deposition using dust deposition monitors and dust concentration as total suspended particles (TSP) using High Volume Air Samplers (HVAS). The dust deposition monitors and HVAS measuring TSP are shown in **Figure 9**.

Mining activities at Peak Hill, which would have contributed to local dust levels, ceased in late 2002, although processing activities continued until 2006. TSP data have been analysed for the period during which the Peak Hill mine was operating (1996 to 2002).

Dust deposition data have been supplied for 1996 and the period from 2001 to 2006, covering a period of time when the mine was operational and when mining activities had ceased. These dust gauges are located on the "Tomingley", "Wyoming" and "Dunoon" properties near Tomingley village and the others located in close proximity to each other in Peak Hill. Additional sources of particulate matter in the area would include traffic on unsealed roads, wind erosion from exposed soils in farmlands and other areas, cereal crop harvesting, animal grazing and to a lesser extent traffic from the Newell Highway.

#### 5.2 DUST DEPOSITION

Dust deposition was monitored using dust deposition gauges at eleven locations (see **Figure** 9). Dust deposition gauges use a funnel and bottle to measure the rate at which dust settles onto the surface over periods approximating one month.

Data collected from the "Tomingley", "Wyoming" and "Dunoon" property monitoring stations are summarised in **Table 5.1**. This table also presents dust deposition data from the eight other sites monitored during the life of the Peak Hill Gold Mine. These measurements include the effects of all relevant background sources. All dust deposition data are shown in **Appendix 2**.

|               | ,Dunoon' | 'Wyoming' | 'Tomingley' | 41 Euchie St | 'Little Oakleigh' | 59 Euchie St | 'Cowabunga' | Warrigal Rd | 2 Caswell St | Frazer court<br>hotel | 'Towalba' | Average for all sites |
|---------------|----------|-----------|-------------|--------------|-------------------|--------------|-------------|-------------|--------------|-----------------------|-----------|-----------------------|
| 1996          | -        | -         | -           | 2.6          | 2.1               | 3.3          |             | 2.9         | 3.1          |                       | 3.4       | 2.9                   |
| 1997-<br>2000 | -        | -         | -           | -            | -                 | -            | -           | -           | -            | -                     | -         | -                     |
| 2001          | -        | -         | -           | 1.0          | 1.0               | 0.9          | 2.0         | 1.6         | 1.2          | 1.5                   | -         | 1.3                   |
| 2002          | 2.1      | 4.1       | 1.7         | 1.7          | -                 | 1.9          | 0.9         | 1.7         | 1.5          | 1.6                   | -         | 1.9                   |
| 2003          | 2.1      | 3.4       | 3.3         | -            | -                 | -            | -           | -           | -            | -                     | -         | 2.9                   |
| 2004          | 1.6      | 2.6       | 1.8         | -            | -                 | -            | -           | -           | -            | -                     | -         | 2.0                   |
| 2005          | 1.2      | 1.9*      | 1.3         | -            | -                 | -            | -           | -           | -            | -                     | -         | 1.3                   |
| 2006          | 0.9      | 1.7       | 1.6         | -            | -                 | -            | -           | -           | -            | -                     | -         | 1.4                   |
| Average       | 1.7      | 2.9       | 2.0         | 1.8          | 1.5               | 2.0          | 1.5         | 2.1         | 1.9          | 1.5                   | 3.4       | 2.0                   |

 Table 5.1

 Dust Deposition Monitoring Results (g/m²/month)

\* Contaminated samples.

The data in **Table 5.1**, which accounts for the removal of some sampling data due to contamination of the samples, show that no location has reported an average level above the OEH's  $4g/m^2/month$  dust fallout criteria. The annual average over all sampling locations is  $2g/m^2/month$ .

#### 5.3 TSP CONCENTRATION

Measurements of TSP concentrations are available for the years 1996 to 2000 at the 59 Euchie Street monitoring site and at Frazer Court, from 2001 to 2002. These monitoring sites are shown on **Figure 9**.

TSP data are shown below in **Table 5.2**. The highest annual average TSP concentration is  $71\mu g/m^3$  measured in 1997 at the 59 Euchie Street monitoring site. The data in **Table 5.2** show that no location has reported an average level above the NSW OEH's TSP criterion of  $90\mu g/m^3$ . The annual average TSP level over both monitoring sites is  $51\mu g/m^3$ . **Figure 10** presents these data graphically.

|         | 59 Euchie Street | Frazer Court |
|---------|------------------|--------------|
| 1996    | 58.7             | -            |
| 1997    | 71.0             | -            |
| 1998    | 47.2             | -            |
| 1999    | 50.9             | -            |
| 2000    | 43.7             | -            |
| 2001    | -                | 36.3         |
| 2002    | -                | 50.2         |
| Average | 54.3             | 47.2         |

Table 5.2 TSP Monitoring Results (µg/m³)

There have been no  $PM_{10}$  data collected, however, extensive monitoring and analysis in the Hunter Valley indicates that where mining activities are a significant source of the particulate matter, then on an annual basis, approximately 40% of the TSP will be in the form of  $PM_{10}$ . Assuming that  $PM_{10}$  constitutes 40% of the TSP at Peak Hill, the annual average  $PM_{10}$  level would be  $20\mu g/m^3$  for the 59 Euchie Street and Frazer Court sites for 1996 to 2002.

All TSP data are shown in **Appendix 2**.

#### 5.4 SUMMARY OF BACKGROUND DATA

From the monitoring data available it has been assumed that the following background concentrations apply at the nearest sensitive receptors:

- Annual average TSP of 51µg/m<sup>3</sup>;
- Annual average PM<sub>10</sub> of 20μg/m<sup>3</sup>;
- Annual average dust deposition of 2g/m<sup>2</sup>/month.

These assumed background levels are conservative in that they include data from years when mining and processing activities were occurring at Peak Hill. It is anticipated that actual background levels would be lower than these levels.

In addition, the OEH guidelines require an assessment of cumulative 24-hour  $PM_{10}$  concentrations. 24-hour  $PM_{10}$  concentrations in NSW fluctuate considerably, and can be elevated in times of drought and windy conditions.

This assessment adopts the approach that the predicted 24-hour average  $PM_{10}$  concentration from the Project and other sources should be less than  $50\mu g/m^3$  at the nearest sensitive receptors. Monitoring data have been analysed and a conservative approach has been taken when assessing cumulative  $PM_{10}$  24-hour impacts. This is further addressed in **Section 8.2**.

#### 6 APPROACH TO ASSESSMENT

In August 2005, the then Department of Environment and Conservation (DEC) (now OEH) published 'Approved Methods for the Modelling and Assessment of Air Pollution in NSW (**NSW DEC, 2005**). The document specifies how assessments based on the use of air dispersion models should be undertaken. They include methods for the preparation of meteorological data to be used in dispersion models, the way in which emissions should be estimated and the relevant air quality criteria for assessing the significance of predicted concentration and deposition rates from the proposal. The approach taken in this assessment follows as closely as possible to the approaches suggested by the 'Approved Methods'.

This section is provided so that technical reviewers can appreciate how the modelling of different particle size categories was carried out.

The model used was a modified version of the US EPA ISCST3 model (ISCMOD). ISCST3 is fully described in the user manual and the accompanying technical description (**US EPA**, **1995a**).

The ISCST3 model has a tendency to overestimate short-term (24-hour) PM<sub>10</sub> concentrations (**Holmes et al., 2007**). To overcome this difficulty the modelling algorithms were modified to create ISCMOD. ISCMOD is identical to ISC except that the horizontal plume spreading dispersion curves have been modified to adopt the recommendations of the American Meteorological Society's (AMS) expert panel on dispersion curves (**Hanna, 1977**) and the suggestions made by **Arya (1999).** The suggested changes were recommended because, as the AMS panel notes, the original horizontal dispersion curves relate to an averaging time of three minutes and they recommend that these be adjusted to the one hour curves required by ISC. The change involves increasing the horizontal plume widths by a factor of 1.82 (60 minutes / 3 minute)<sup>0.2</sup>. The modifications improve the performance of the model in predicting 24-hour concentrations and make almost no difference to the annual average predictions.

A similar adjustment has been applied to account for the local surface roughness being different at the sites compared with the site where the original curves were developed. The sites have been taken to have a surface roughness of 0.3m compared with 0.03m for the original curves. The adjustment leads to an increase in the horizontal and vertical curves by a factor of  $(0.3m/0.03m)^{0.2}$  namely 1.6.

The modelling has been based on the use of three particle-size categories (0 to  $2.5\mu$ m - referred to as PM<sub>2.5</sub>, 2.5 to 10 $\mu$ m - referred to as CM (coarse matter) and 10 to 30 $\mu$ m - referred to as the Rest). Emission rates of TSP have been calculated using emission factors developed both within NSW and by the US EPA (see **Appendix 3**). The distribution of particles has been derived from measurements published by the SPCC (**SPCC**, **1986**). The distribution of particles in each particle size range is:

- PM<sub>2.5</sub> (FP) is 4.7% of the TSP;
- PM<sub>2.5-10</sub> (CM) is 34.4% of TSP; and
- PM<sub>10-30</sub> (Rest) is 60.9% of TSP.

Modelling was done using three ISC source groups with each group corresponding to a particle size category. Each source in the group was assumed to emit at the full TSP emission rate and to deposit from the plume in accordance with the deposition rate appropriate for particles with an aerodynamic diameter equal to the geometric mean of the limits of the particle size range, except for the  $PM_{2.5}$  group, which was assumed to have a particle size of 1µm.

Concentrations in the three plot output files for each group were then combined according to the weightings in the dot points above to determine the concentration of  $PM_{10}$  and TSP.

The ISC model also has the capacity to take into account dust emissions that vary in time, or with meteorological conditions. This has proved particularly useful for simulating emissions on mining operations where wind speed is an important factor in determining the rate at which dust is generated.

Estimates of emissions for each source were developed on an hourly time step taking into account the activities that would take place at that location. Thus, for each source, for each hour, an emission rate was determined which depended upon the level of activity and the wind speed. It is important to do this in the ISC model to ensure that long-term average emission rates are not combined with worst-case dispersion conditions which are associated with light winds. Light winds at a mine site would correspond with periods of low dust generation because wind erosion and other wind dependent emissions rates will be low. Light winds also correspond with periods of poor dispersion. If these measures are not taken into account, the model has the potential to significantly overstate impacts.

Three scenarios were assessed as follows:

- Scenario 2 representative of operations at the end of Year 1.
- Scenario 3 representative of operations at the end of Year 2.
- Scenario 4 representative of operations at the end of Year 4.

It is noted that Scenario 1 is representative of operations during construction of the Project and has not been assessed. Scenarios 2, 3 and 4 were selected based on information provided by the Proponent as being 'worst-case' scenarios.

The location of volume sources are presented in **Figure 11** to **Figure 13**. A more detailed description of those scenarios is presented in the *Environmental Assessment*.

Dust concentrations and deposition rates have been predicted in the vicinity of the Mine Site for the three scenarios that were modelled. The local terrain has been taken into consideration for the modelling.

The modelling has been performed using the meteorological data discussed in **Section 4.2** and the dust emission estimates from **Section 7**. As an example, an ISCMOD input file is provided in **Appendix 3**.

All activities have been modelled for 24 hours per day, with the following exceptions.

- Blasting has been assumed to occur between the hours of 9am and 5pm; and
- Dozers working on waste dumps have been assumed to occur between the hours of 6am and 7pm.

Section 7 provides details of dust emissions and allocation of sources for each activity.

To assess the air quality impacts of the proposed mining operations alone, the activities associated with the Project have been modelled in isolation. Contour plots were created and also the results at specific receptor locations were determined in order to assess the contribution of mining activities to local air quality. Model predictions were then compared to the OEH criteria for deposited dust and 24-hour  $PM_{10}$ .

For assessment of the cumulative impacts of the proposed mining operations, a separate set of model results have been presented which consider the contribution of other dust sources in the area through the use of a constant background level for 24-hour  $PM_{10}$ , annual average TSP,  $PM_{10}$  and dust deposition (see **Section 5.4**).

#### 7 ESTIMATED EMISSIONS OF PARTICULATE MATTER

The operation of the Project has been analysed and estimates of dust emissions for the individual activities for modelled scenarios have been made. Total dust emissions due to the Project have been estimated by analysing the proposed activities during each of the proposed scenarios.

The identified activities have been combined with emission factors developed, both locally and by the US EPA, to estimate the amount of dust produced by each activity. The emission factors applied are considered to be the most up-to-date methods for determining dust generation rates. The plans for the Project have been analysed and detailed emissions inventories have been prepared for each of the three scenarios.

**Table 8.1** presents the emission inventories for each scenario modelled. These emissions inventories provide information on the equations used, the basic assumptions about material properties (e.g. moisture content, silt content etc.), information on the way in which equipment would be used to undertake different operations and the quantities of materials that would be handled in each operation. Figure 11 to Figure 13 show the numbered locations that represent dust sources assumed in the modelling. The activities that are associated with each of the numbered locations are identified in **Appendix 3**.

#### 8 ASSESSMENT OF IMPACTS

#### 8.1 INTRODUCTION

The air quality criteria used for identifying which sensitive receptors are likely to experience air quality impacts are those specified by the OEH. These have been discussed in **Section 3**.

The following sub-sections provide a summary of the modelling results for each modelled scenario at each of the sensitive receptors in the proximity of the Mine Site. The locations of these receptors are shown in **Figure 3**. The results include predicted impacts from the Project alone and the cumulative impacts with existing background levels as outlined in **Section 5.4**.

| ACTIVITY                                                            | TSP<br>emission         | TSP                                 | TSP                                 |
|---------------------------------------------------------------------|-------------------------|-------------------------------------|-------------------------------------|
|                                                                     | Scenario 2<br>in (kg/y) | emission<br>Scenario 3<br>in (kg/y) | emission<br>Scenario 4<br>in (kg/y) |
| OB – Drilling                                                       | 68,424                  | 66,050                              | 15,138                              |
| OB – Blasting                                                       | 16,330                  | 15,775                              | 3,613                               |
| OB - Excavator loading OB to haul truck                             | 5,193                   | 3,977                               | 1,088                               |
| OB - Hauling from Caloma OC to WRE 3                                | 90,270                  | 69,137                              | -                                   |
| OB - Hauling from Caloma 2 OC to WRE 3                              | -                       | -                                   | 21,773                              |
| OB - Hauling from Wyoming 1 OC to WRE 1                             | 6,200                   | 4,749                               | 5,348                               |
| OB - Hauling from Wyoming 3 OC to WRE 2                             | 20,789                  | 15,922                              | -                                   |
| OB - Emplacing at WRE 3                                             | 2,337                   | 1,790                               | 326                                 |
| OB - Emplacing at WRE 1                                             | 883                     | 676                                 | 761                                 |
| OB - Emplacing at WRE 2                                             | 1,973                   | 1,511                               | -                                   |
| OB - Dozers on OB                                                   | 36,640                  | 36,640                              | 36,640                              |
| ORE – Drilling                                                      | 1,277                   | 928                                 | 2,114                               |
| ORE – Blasting                                                      | 806                     | 589                                 | 2,989                               |
| ORE - Dozers ripping/pushing/clean-up                               | 109,963                 | 109,963                             | 109,963                             |
| ORE - Sh/Ex/FELs loading open pit ore to trucks                     | 132,623                 | 106,550                             | 118,303                             |
| ORE - Hauling open pit ore from Caloma OC to ROM pad                | 15,374                  | 12,352                              | 110,303                             |
| ORE - Hauling open pit ore from Caloma 2 OC to ROM pad              | 15,574                  | 12,352                              | - 13,298                            |
| ORE - Hauling open pit ore from Wyoming 1 to ROM pad                | - 8,184                 | -                                   | 30,060                              |
| ORE - Hauling open pit ore from Wyoming 3 to ROM pad                | 7,081                   | 6,575                               | 30,000                              |
| ORE - Hading open pit ore from wyoming 3 to ROW pad                 | 442                     | 5,689<br>355                        | - 394                               |
| ORE - FEL unloading ROM from stockpiles to ROM bin                  | 442                     | 355                                 | 394<br>394                          |
| <b>2</b>                                                            |                         |                                     |                                     |
| ORE - Primary Crushing                                              | 30,041                  | 24,135                              | 26,797                              |
| ORE - Conveying to Screen Building                                  | 46                      | 46                                  | 46                                  |
| ORE - Unloading ore from conveyor to Screen Building                | 442                     | 355                                 | 394                                 |
| ORE – Screening                                                     | 1,878                   | 1,508                               | 1,675                               |
| ORE - Conveying oversized material to Crushing Building             | 46                      | 46                                  | 46                                  |
| ORE - Unloading oversized ore from conveyor to Crushing<br>Building | 126                     | 101                                 | 112                                 |
| ORE - Secondary Crushing                                            | 85,616                  | 68,784                              | 76,371                              |
| ORE - Conveying oversized material to Screen Building               | 46                      | 46                                  | 46                                  |
| ORE - Conveying undersized material to Surge Bin                    | 27                      | 27                                  | 27                                  |
| ORE - Unloading undersized ore from conveyor to Surge Bin           | 7                       | 5                                   | 6                                   |
| ORE - Conveying undersized material from Surge Bin to ball mill     | 44                      | 44                                  | 44                                  |
| ORE - Unloading undersized ore from conveyor to ball mill           | 22                      | 18                                  | 20                                  |
| REHAB - Dozers on rehab                                             | -                       | 3,861                               | 3,861                               |
| WE - OB dump areas                                                  | 245,280                 | 223,730                             | 223,730                             |
| WE - Residue Storage                                                | 51,824                  | 51,824                              | 51,824                              |
| WE - Open pit                                                       | 198,677                 | 198,677                             | 198,677                             |
| WE - ROM stockpiles                                                 | 1,402                   | 1,402                               | 1,402                               |
| Grading roads                                                       | 86,264                  | 86,264                              | 86,264                              |
| Total                                                               | 1,227,019               | 1,120,458                           | 1,033,545                           |

## Table 8.1Estimated Dust Emissions from the Tomingley Gold Project

Note: OB – Overburden

WE – Wind Erosion

OC = Open Cut

Dust concentrations due to mining, processing and waste management operations have been presented as isopleth diagrams showing the following.

- Predicted maximum 24-hour average PM<sub>10</sub> concentration.
- Predicted annual average PM<sub>10</sub> concentration.
- Predicted annual average TSP concentration.
- Predicted annual average dust deposition.

In examining the maximum 24-hour average contour plots, it should be noted that plots do not represent the dispersion pattern for any particular day, but show the highest predicted 24-hour average concentration that would occur at each location for the worst day in the modelled year. The maxima are used to show concentrations which can possibly be reached under the modelled conditions. It should also be noted that the plots show the assessment criteria as a red contour line. Plots which consist of concentrations too low do not show the assessment criteria contour.

#### 8.1.1 Scenario 2 – End Year 1

**Figure 14** shows the predicted maximum 24-hour average  $PM_{10}$  concentration for operations in Scenario 2. **Figure 15** to **Figure 20** show the predicted annual average  $PM_{10}$ , TSP concentrations and dust deposition levels for operations in Scenario 2 for the Project alone and the Project and other sources.

**Table 8.2** presents a summary of the Scenario 2 predicted concentrations at each of the nearby sensitive receptors, due to the operations of the Project alone and the Project and other sources.

Modelling results for Scenario 2 show no exceedances of the air quality criteria at any sensitive receptor surrounding the Mine Site.

#### 8.1.2 Scenario 3 – End Year 2

**Figure 21** shows the predicted maximum 24-hour average  $PM_{10}$  concentration for operations in Scenario 3. **Figure 22** to **Figure 27** show the predicted annual average  $PM_{10}$ , TSP concentrations and dust deposition levels for operations in Scenario 3 for the Project alone and the Project and other sources.

**Table 8.3** presents a summary of the Scenario 3 predicted concentrations at each of the nearby sensitive receptors, due to the operations of the Project alone and the Project and other sources.

Report No. 616/06

|                    |                     | Scenario | 2 – Project    | Scenario 2 - Project and other sources |                 |                |                                    |  |  |
|--------------------|---------------------|----------|----------------|----------------------------------------|-----------------|----------------|------------------------------------|--|--|
|                    | PN<br>(µg/          |          | TSP<br>(µg/m³) | Dust<br>Deposition<br>(g/m²/month)     | ΡΜ₁₀<br>(μg/m³) | TSP<br>(μg/m³) | Dust<br>Deposition<br>(g/m²/month) |  |  |
|                    | 24-hour             | Annual   | Annual         | Annual                                 | Annual          | Annual         | Annual                             |  |  |
| Sensitive Receptor | Assessment Criteria |          |                |                                        |                 |                |                                    |  |  |
| ID .               | N/A                 | N/A      | N/A            | 2                                      | 30              | 90             | 4                                  |  |  |
| R1                 | 16                  | 3        | 3              | 0.1                                    | 23              | 54             | 2.1                                |  |  |
| R2                 | 11                  | 1        | 1              | 0.0                                    | 21              | 52             | 2.0                                |  |  |
| R3                 | 34                  | 5        | 6              | 0.2                                    | 25              | 57             | 2.2                                |  |  |
| R4                 | 21                  | 2        | 3              | 0.0                                    | 22              | 54             | 2.0                                |  |  |
| R5                 | 21                  | 3        | 4              | 0.1                                    | 23              | 55             | 2.1                                |  |  |
| R6                 | 21                  | 3        | 4              | 0.2                                    | 23              | 55             | 2.2                                |  |  |
| R8                 | 6                   | 1        | 1              | 0.0                                    | 21              | 52             | 2.0                                |  |  |
| R9                 | 8                   | 1        | 1              | 0.0                                    | 21              | 52             | 2.0                                |  |  |
| R10                | 15                  | 2        | 2              | 0.1                                    | 22              | 53             | 2.1                                |  |  |
| R11                | 14                  | 2        | 2              | 0.1                                    | 22              | 53             | 2.1                                |  |  |
| R12                | 8                   | 1        | 1              | 0.0                                    | 21              | 52             | 2.0                                |  |  |
| R13                | 15                  | 2        | 3              | 0.1                                    | 22              | 54             | 2.1                                |  |  |
| R16                | 19                  | 3        | 3              | 0.1                                    | 23              | 54             | 2.1                                |  |  |
| R17                | 21                  | 3        | 3              | 0.1                                    | 23              | 54             | 2.1                                |  |  |
| R18                | 10                  | 1        | 2              | 0.1                                    | 21              | 53             | 2.1                                |  |  |
| R19                | 21                  | 3        | 3              | 0.1                                    | 23              | 54             | 2.1                                |  |  |
| R21                | 20                  | 3        | 3              | 0.2                                    | 23              | 54             | 2.2                                |  |  |
| R22                | 11                  | 1        | 2              | 0.1                                    | 21              | 53             | 2.1                                |  |  |
| R23                | 23                  | 3        | 4              | 0.2                                    | 23              | 55             | 2.2                                |  |  |
| R24                | 11                  | 1        | 1              | 0.1                                    | 21              | 52             | 2.1                                |  |  |
| R25                | 23                  | 3        | 4              | 0.2                                    | 23              | 55             | 2.2                                |  |  |
| R26                | 23                  | 3        | 4              | 0.2                                    | 23              | 55             | 2.2                                |  |  |
| R27                | 12                  | 1        | 1              | 0.1                                    | 21              | 52             | 2.1                                |  |  |
| R28                | 32                  | 5        | 5              | 0.2                                    | 25              | 56             | 2.2                                |  |  |
| R29                | 33                  | 5        | 6              | 0.2                                    | 25              | 57             | 2.2                                |  |  |
| R32                | 29                  | 4        | 5              | 0.2                                    | 24              | 56             | 2.2                                |  |  |
| R33                | 26                  | 4        | 4              | 0.2                                    | 24              | 55             | 2.2                                |  |  |
| R35                | 25                  | 3        | 4              | 0.1                                    | 23              | 55             | 2.1                                |  |  |
| R37                | 22                  | 3        | 3              | 0.1                                    | 23              | 54             | 2.1                                |  |  |
| R40                | 30                  | 4        | 5              | 0.2                                    | 24              | 56             | 2.2                                |  |  |

#### Table 8.2

#### Scenario 2 Model Predictions due to the Project Alone and the Project and Other Sources

Modelling results for Scenario 3 show no exceedances of the air quality criteria at any sensitive receptor surrounding the Mine Site.

#### 8.1.3 Scenario 4 – End Year 4

**Figure 28** shows the predicted maximum 24-hour average  $PM_{10}$  concentration for operations in Scenario 4. **Figure 29** to **Figure 34** show the predicted annual average  $PM_{10}$ , TSP concentrations and dust deposition levels for operations in Scenario 4 for the Project alone and the Project and other sources.

**Table 8.4** presents a summary of the Scenario 4 predicted concentrations at each of the nearby sensitive receptors, due to the operations of the Project alone and the Project and other sources.

Modelling results for Scenario 4 show no exceedances of the air quality criteria at any sensitive receptor surrounding the Mine Site.

|                    |                     | Scenario     | 3 – Project    | alone                              | Scenario                                 | 3 - Project an | d other sources                    |  |
|--------------------|---------------------|--------------|----------------|------------------------------------|------------------------------------------|----------------|------------------------------------|--|
|                    | PN<br>(µg/          | /I₁₀<br>′m³) | TSP<br>(µg/m³) | Dust<br>Deposition<br>(g/m²/month) | ΡΜ <sub>10</sub><br>(μg/m <sup>3</sup> ) | TSP<br>(µg/m³) | Dust<br>Deposition<br>(g/m²/month) |  |
|                    | 24-hour             | Annual       | Annual         | Annual                             | Annual                                   | Annual         | Annual                             |  |
| Sensitive Receptor | Assessment Criteria |              |                |                                    |                                          |                |                                    |  |
| ID                 | N/A                 | N/A          | N/A            | 2                                  | 30                                       | 90             | 4                                  |  |
| R1                 | 16                  | 3            | 3              | 0.1                                | 23                                       | 54             | 2.1                                |  |
| R2                 | 11                  | 1            | 1              | 0.0                                | 21                                       | 52             | 2.0                                |  |
| R3                 | 34                  | 5            | 6              | 0.2                                | 25                                       | 57             | 2.2                                |  |
| R4                 | 21                  | 2            | 3              | 0.0                                | 22                                       | 54             | 2.0                                |  |
| R5                 | 21                  | 3            | 4              | 0.1                                | 23                                       | 55             | 2.1                                |  |
| R6                 | 21                  | 3            | 4              | 0.2                                | 23                                       | 55             | 2.2                                |  |
| R8                 | 6                   | 1            | 1              | 0.0                                | 21                                       | 52             | 2.0                                |  |
| R9                 | 8                   | 1            | 1              | 0.0                                | 21                                       | 52             | 2.0                                |  |
| R10                | 15                  | 2            | 2              | 0.1                                | 22                                       | 53             | 2.1                                |  |
| R11                | 14                  | 2            | 2              | 0.1                                | 22                                       | 53             | 2.1                                |  |
| R12                | 8                   | 1            | 1              | 0.0                                | 21                                       | 52             | 2.0                                |  |
| R13                | 15                  | 2            | 3              | 0.1                                | 22                                       | 54             | 2.1                                |  |
| R16                | 19                  | 3            | 3              | 0.1                                | 23                                       | 54             | 2.1                                |  |
| R17                | 21                  | 3            | 3              | 0.1                                | 23                                       | 54             | 2.1                                |  |
| R18                | 10                  | 1            | 2              | 0.1                                | 21                                       | 53             | 2.1                                |  |
| R19                | 21                  | 3            | 3              | 0.1                                | 23                                       | 54             | 2.1                                |  |
| R21                | 20                  | 3            | 3              | 0.2                                | 23                                       | 54             | 2.2                                |  |
| R22                | 11                  | 1            | 2              | 0.1                                | 21                                       | 53             | 2.1                                |  |
| R23                | 23                  | 3            | 4              | 0.2                                | 23                                       | 55             | 2.2                                |  |
| R24                | 11                  | 1            | 1              | 0.1                                | 21                                       | 52             | 2.1                                |  |
| R25                | 23                  | 3            | 4              | 0.2                                | 23                                       | 55             | 2.2                                |  |
| R26                | 23                  | 3            | 4              | 0.2                                | 23                                       | 55             | 2.2                                |  |
| R27                | 12                  | 1            | 1              | 0.1                                | 21                                       | 52             | 2.1                                |  |
| R28                | 32                  | 5            | 5              | 0.2                                | 25                                       | 56             | 2.2                                |  |
| R29                | 33                  | 5            | 6              | 0.2                                | 25                                       | 57             | 2.2                                |  |
| R32                | 29                  | 4            | 5              | 0.2                                | 24                                       | 56             | 2.2                                |  |
| R33                | 26                  | 4            | 4              | 0.2                                | 24                                       | 55             | 2.2                                |  |
| R35                | 25                  | 3            | 4              | 0.1                                | 23                                       | 55             | 2.1                                |  |
| R37                | 22                  | 3            | 3              | 0.1                                | 23                                       | 54             | 2.1                                |  |
| R40                | 30                  | 4            | 5              | 0.2                                | 24                                       | 56             | 2.2                                |  |

## Table 8.3 Scenario 3 Model Predictions due to the Project Alone and the Project and Other Sources

#### 8.2 PM<sub>10</sub> 24-HOUR CUMULATIVE IMPACTS

It is important to note that it is not possible to accurately predict cumulative 24-hour  $PM_{10}$  concentrations many years into the future using dispersion modelling, in particular due to the variability in ambient levels and spatial and temporal variation in any day to day anthropogenic activity, including any future mining.

Experience shows that the worst-case 24-hour  $PM_{10}$  concentrations are strongly influenced by other sources in the area, such as bushfires and dust storms, which are essentially unpredictable. However, this does not mean that no action should be taken to control Project dust emissions.

Report No. 616/06

|                    |                     | Scenario    | 4 – Project    | alone                              | Scenario        | Scenario 4 - Project and other sources |                                    |  |  |
|--------------------|---------------------|-------------|----------------|------------------------------------|-----------------|----------------------------------------|------------------------------------|--|--|
|                    | PN<br>(µg/          | l₁₀<br>′m³) | TSP<br>(µg/m³) | Dust<br>Deposition<br>(g/m²/month) | ΡΜ₁₀<br>(µg/m³) | TSP<br>(µg/m³)                         | Dust<br>Deposition<br>(g/m²/month) |  |  |
|                    | 24-hour             | Annual      | Annual         | Annual                             | Annual          | Annual                                 | Annual                             |  |  |
| Sensitive Receptor | Assessment Criteria |             |                |                                    |                 |                                        |                                    |  |  |
| ID                 | N/A                 | N/A         | N/A            | 2                                  | 30              | 90                                     | 4                                  |  |  |
| R1                 | 15                  | 2           | 2              | 0.1                                | 22              | 53                                     | 2.1                                |  |  |
| R2                 | 10                  | 1           | 1              | 0.0                                | 21              | 52                                     | 2.0                                |  |  |
| R3                 | 26                  | 3           | 4              | 0.2                                | 23              | 55                                     | 2.2                                |  |  |
| R4                 | 16                  | 2           | 2              | 0.0                                | 22              | 53                                     | 2.0                                |  |  |
| R5                 | 18                  | 3           | 4              | 0.1                                | 23              | 55                                     | 2.1                                |  |  |
| R6                 | 21                  | 3           | 4              | 0.3                                | 23              | 55                                     | 2.3                                |  |  |
| R8                 | 6                   | 1           | 1              | 0.0                                | 21              | 52                                     | 2.0                                |  |  |
| R9                 | 7                   | 1           | 1              | 0.0                                | 21              | 52                                     | 2.0                                |  |  |
| R10                | 12                  | 1           | 2              | 0.1                                | 21              | 53                                     | 2.1                                |  |  |
| R11                | 11                  | 1           | 1              | 0.0                                | 21              | 52                                     | 2.0                                |  |  |
| R12                | 7                   | 1           | 1              | 0.0                                | 21              | 52                                     | 2.0                                |  |  |
| R13                | 14                  | 2           | 2              | 0.1                                | 22              | 53                                     | 2.1                                |  |  |
| R16                | 17                  | 2           | 2              | 0.1                                | 22              | 53                                     | 2.1                                |  |  |
| R17                | 19                  | 2           | 3              | 0.1                                | 22              | 54                                     | 2.1                                |  |  |
| R18                | 10                  | 1           | 1              | 0.1                                | 21              | 52                                     | 2.1                                |  |  |
| R19                | 18                  | 2           | 3              | 0.1                                | 22              | 54                                     | 2.1                                |  |  |
| R21                | 18                  | 2           | 3              | 0.1                                | 22              | 54                                     | 2.1                                |  |  |
| R22                | 10                  | 1           | 1              | 0.1                                | 21              | 52                                     | 2.1                                |  |  |
| R23                | 20                  | 3           | 3              | 0.1                                | 23              | 54                                     | 2.1                                |  |  |
| R24                | 11                  | 1           | 1              | 0.1                                | 21              | 52                                     | 2.1                                |  |  |
| R25                | 20                  | 2           | 3              | 0.1                                | 22              | 54                                     | 2.1                                |  |  |
| R26                | 19                  | 2           | 3              | 0.1                                | 22              | 54                                     | 2.1                                |  |  |
| R27                | 11                  | 1           | 1              | 0.1                                | 21              | 52                                     | 2.1                                |  |  |
| R28                | 25                  | 3           | 4              | 0.1                                | 23              | 55                                     | 2.1                                |  |  |
| R29                | 26                  | 3           | 4              | 0.1                                | 23              | 55                                     | 2.1                                |  |  |
| R32                | 23                  | 3           | 3              | 0.1                                | 23              | 54                                     | 2.1                                |  |  |
| R33                | 22                  | 3           | 3              | 0.1                                | 23              | 54                                     | 2.1                                |  |  |
| R35                | 20                  | 3           | 3              | 0.1                                | 23              | 54                                     | 2.1                                |  |  |
| R37                | 18                  | 2           | 3              | 0.1                                | 22              | 54                                     | 2.1                                |  |  |
| R40                | 24                  | 3           | 3              | 0.1                                | 23              | 54                                     | 2.1                                |  |  |

Table 8.4

#### Scenario 4 Model Predictions due to the Project Alone and the Project and Other Sources

As discussed in **Section 5.3**, there are currently no continuous measurements of  $PM_{10}$  available in the area that could be considered background, that is, ambient concentration due to all other sources excluding the emissions from the Project. However, extensive monitoring and analysis in the Hunter Valley indicates that where mining activities are a significant source of the particulate matter, then on an annual basis, approximately 40% of the TSP will be in the form of  $PM_{10}$ . In order to estimate  $PM_{10}$  concentrations in the area, it has been assumed that this is applicable to the available TSP data.

The Approved Methods describe two methods for assessing cumulative air quality impacts (see Section 11.2 of the Approved Methods).

The Level 1 assessment (suitable for a screening assessment) requires that the highest predicted concentration from a proposal is added to the highest observed concentration in a data set which provides measurements of  $PM_{10}$  concentrations representative of conditions at the site being assessed. As discussed above, due to a lack of  $PM_{10}$  monitoring data, 40% of TSP has been assumed to be  $PM_{10}$ . When this is applied, the maximum  $PM_{10}$  value across all of the HVAS monitored data would be a  $PM_{10}$  concentration of  $93\mu g/m^3$ . This concentration is already above the impact assessment criterion of  $50\mu g/m^3$ . Furthermore, these data are considered to be conservative as they were collected in close proximity to the Peak Hill Mine which was operating during monitoring.

A Level 2 assessment, contemporaneously adds observed and predicted 24-hour  $PM_{10}$  concentrations on the same day. This provides a more rigorous approach.

6 - 27

The Level 1 and Level 2 methods require that a data set exists that can provide information on 24-hour  $PM_{10}$  concentrations representative of the sites being assessed.

As previously discussed, continuous records of 24-hour  $PM_{10}$  concentrations are not available for this site. As the site has HVAS monitors recording TSP only there are no  $PM_{10}$  data available. It could be assumed that 40% of the HVAS TSP data is  $PM_{10}$ , however, the final year of TSP observations is 2002, whereas the meteorological file used for the dispersion modelling for the Project is. Therefore, these data could not be matched up and would not comply with a Level 2 DECCW assessment.

It is noted that the OEH operate a TEOM at Bathurst approximately 153 kilometres southeast of the Mine Site. Due to its distance and location in a densely populated urban city, which is a stark contrast to the rural setting of the Mine Site, data from this site would not be representative of ambient background levels surrounding the Project.

Due to reasons stated above, it would not be appropriate to follow the methodology in the Approved Methods as there are no continuous monitored  $PM_{10}$  data available. As such, the approach recommended by the Victorian EPA has been applied to the data (**VEPA**, 2001).

VEPA recommends that the monitored  $70^{th}$  percentile  $PM_{10}$  concentration (in this case  $25\mu g/m^3$ ) be added to the maximum prediction at each sensitive receptor. Applying this method provides an indication of  $PM_{10}$  concentrations in the absence of anomalous data due to extreme events such as bushfires and dust storms. It does, however, provide a potentially high estimation of 24-hour average background  $PM_{10}$  concentrations as adding this value to Project modelling results assumes that this level of  $25\mu g/m^3$  will occur every day, which is clearly not the case as by definition background levels will be lower for 70% of the time.

Using the VEPA 70<sup>th</sup> percentile approach, a level of  $25\mu g/m^3$  can be added to the maximum 24-hour average modelling predictions for each receptor. This would mean that for a receptor to exceed the criterion, it would have to predict a concentration of  $25\mu g/m^3$  from the Project alone.

**Table 8.5** presents a summary of 24-hour  $PM_{10}$  predicted results for the Project alone and Project and other sources for all modelled scenarios. It is clear that the majority of receptors have recorded 24-hour  $PM_{10}$  concentrations of well below 25 µg/m<sup>3</sup>. There are however, some predicted exceedances of the criteria when an assumed background level of  $25\mu$ g/m<sup>3</sup> (using the VEPA approach) is added to predicted concentrations. In Scenario 2 and 3 results for Receptors 3, 28, 29, 32, 33 and 40 are predicted to be above the 24-hour  $PM_{10}$  cumulative criterion. In Scenario 4 Receptors 3 and 29 are above the criterion.

Due to predicted exceedances of the  $PM_{10}$  24-hour criterion shown at sensitive receptors, further analysis has been undertaken.

**Figure 35** to **Figure 37** present histograms showing the percentage frequency of predicted  $PM_{10}$  24-hour average concentrations (for mine only) at each of the receptors shown to exceed the cumulative criterion in **Table 8.5**.

| romingley  | Gola Projec |
|------------|-------------|
| Report No. | 616/06      |

|              | Scena                 | ario 2                                | Scen                                  | ario 3                | Scenario 4                            |                                       |  |
|--------------|-----------------------|---------------------------------------|---------------------------------------|-----------------------|---------------------------------------|---------------------------------------|--|
|              | Project alone         | Cumulative                            | Project alone                         | Cumulative            | Project alone                         | Cumulative                            |  |
| Residence ID | $PM_{10} (\mu g/m^3)$ | PM <sub>10</sub> (μg/m <sup>3</sup> ) | PM <sub>10</sub> (μg/m <sup>3</sup> ) | $PM_{10} (\mu g/m^3)$ | PM <sub>10</sub> (µg/m <sup>3</sup> ) | PM <sub>10</sub> (µg/m <sup>3</sup> ) |  |
| Residence ID | 24-hour               | 24-hour                               | 24-hour                               | 24-hour               | 24-hour                               | 24-hour                               |  |
|              |                       |                                       | Assessme                              | nt Criteria           |                                       |                                       |  |
|              | N/A                   | 50                                    | N/A                                   | 50                    | N/A                                   | 50                                    |  |
| R1           | 16                    | 41                                    | 16                                    | 41                    | 15                                    | 40                                    |  |
| R2           | 11                    | 36                                    | 11                                    | 36                    | 10                                    | 35                                    |  |
| R3           | 34                    | <u>59</u>                             | 34                                    | <u>59</u>             | 26                                    | <u>51</u>                             |  |
| R4           | 21                    | 46                                    | 21                                    | 46                    | 16                                    | 41                                    |  |
| R5           | 21                    | 46                                    | 21                                    | 46                    | 18                                    | 43                                    |  |
| R6           | 21                    | 46                                    | 21                                    | 46                    | 21                                    | 46                                    |  |
| R8           | 6                     | 31                                    | 6                                     | 31                    | 6                                     | 31                                    |  |
| R9           | 8                     | 33                                    | 8                                     | 33                    | 7                                     | 32                                    |  |
| R10          | 15                    | 40                                    | 15                                    | 40                    | 12                                    | 37                                    |  |
| R11          | 14                    | 39                                    | 14                                    | 39                    | 11                                    | 36                                    |  |
| R12          | 8                     | 33                                    | 8                                     | 33                    | 7                                     | 32                                    |  |
| R13          | 15                    | 40                                    | 15                                    | 40                    | 14                                    | 39                                    |  |
| R16          | 19                    | 44                                    | 19                                    | 44                    | 17                                    | 42                                    |  |
| R17          | 21                    | 46                                    | 21                                    | 46                    | 19                                    | 44                                    |  |
| R18          | 10                    | 35                                    | 10                                    | 35                    | 10                                    | 35                                    |  |
| R19          | 21                    | 46                                    | 21                                    | 46                    | 18                                    | 43                                    |  |
| R21          | 20                    | 45                                    | 20                                    | 45                    | 18                                    | 43                                    |  |
| R22          | 11                    | 36                                    | 11                                    | 36                    | 10                                    | 35                                    |  |
| R23          | 23                    | 48                                    | 23                                    | 48                    | 20                                    | 45                                    |  |
| R24          | 11                    | 36                                    | 11                                    | 36                    | 11                                    | 36                                    |  |
| R25          | 23                    | 48                                    | 23                                    | 48                    | 20                                    | 45                                    |  |
| R26          | 23                    | 48                                    | 23                                    | 48                    | 19                                    | 44                                    |  |
| R27          | 12                    | 37                                    | 12                                    | 37                    | 11                                    | 36                                    |  |
| R28          | 32                    | <u>57</u>                             | 32                                    | 57                    | 25                                    | 50                                    |  |
| R29          | 33                    | 58                                    | 33                                    | 58                    | 26                                    | 51                                    |  |
| R32          | 29                    | 54                                    | 29                                    | 54                    | 23                                    | 48                                    |  |
| R33          | 26                    | 51                                    | 26                                    | 51                    | 22                                    | 47                                    |  |
| R35          | 25                    | 50                                    | 25                                    | 50                    | 20                                    | 45                                    |  |
| R37          | 22                    | 47                                    | 22                                    | 47                    | 18                                    | 43                                    |  |
| R40          | 30                    | 55                                    | 30                                    | 55                    | 24                                    | 49                                    |  |

#### Table 8.5 24-hour PM<sub>10</sub> Project Alone and Cumulative Results for Each Modelled Scenario (Using VEPA 70<sup>th</sup> Percentile Method)

Figure 35 and Figure 36 show that in Scenarios 2 and 3, greater than 60% of concentrations over the modelled year are below 5µg/m<sup>3</sup> for all receptors. Figure 37 shows that in Scenario 4 greater than 70% of concentrations over the modelled year are below 5µg/m<sup>3</sup> for all receptors.

Adopting a background of  $25\mu g/m^3$  (as per previous discussion), the predicted 24-hour PM<sub>10</sub> concentration will need to be below 25µg/m<sup>3</sup> in order for impacted properties to comply with the 50µg/m<sup>3</sup> criterion. Modelling results show that there is only one day (0.3% of the time) where the criterion is predicted to be exceeded throughout the year at each receptor and in each Scenario.

There is a 30% probability of the background level being over 25µg/m<sup>3</sup> and a 0.3% probability of the Project contribution being over 25µg/m<sup>3</sup>. The probability of these two events occurring simultaneously is therefore approximately 0.09% of the time annually, or about one day in three years. This predicted frequency of exceedances of the 24-hour  $PM_{10}$  criterion (50µg/m<sup>3</sup>) indicates that the Project is unlikely to pose any significant risk to receptors in Scenarios 2, 3 and 4.

#### 9 MITIGATION MEASURES

#### 9.1 INTRODUCTION

The modelling results presented above are based on the assumption that Alkane applies the control measures discussed in **Section 9.2** to minimise dust emissions. This section outlines procedures proposed for the management and control of dust emissions.

#### 9.2 PROPOSED DUST MANAGEMENT AND CONTROL PROCEDURES

The term "best practice" is frequently used in pollution control and pollution management. However, what constitutes "best practice" is difficult to define in practical situations. In 1998, Environment Australia published a series of booklets to assist the mining industry with incorporating best practice environmental management through all phases of mineral production from exploration through construction and eventual closure. In the booklet for Dust Control (**Environment Australia, 1998**) "best practice" is defined as follows:

"Best Practice can be defined as the most practical and effective methodology that is currently in use or otherwise available. Best practice dust management can be achieved by appropriate planning in the case of new or expanding mining operations and by identifying and controlling dust sources during the active phases of all mining operations."

This document has since been updated by the Department of Energy, Resources and Tourism (DERT) who have published the handbook *Leading Practice Sustainable Development Program for the Mining Industry* (**DERT, 2009**). This new handbook introduces the term "leading practice", which:

"...considers the latest and most appropriate technology applied in order to seek better financial, social and environmental outcomes for present stakeholders and future generations."

Specific best practice measures for coal mining operations are outlined in the recent DECCW document *NSW Coal Mining Benchmarking Study: International Best Practice Measures to Prevent and/or Minimise Emissions of Particulate Matter from Coal Mining, 2010* (Katestone, 2010). Whilst not specific to gold mining operations, the open-cut nature of the proposed Project would result in the generation of dust emissions from similar sources. As such Katestone (2010) provides valuable guidance on controlling emissions from the Project.

Dust emissions from the Mine Site would be generated from two primary sources:

- Wind-blown dust from exposed areas; and
- Dust generated by mining activities.

The following procedures are proposed for the management of dust emissions from the Project. The aim of these is to minimise the emission of dust in a cost effective manner. The effects of these controls are included in the model simulations. The proposed controls have been considered against those determined to be best or leading practice in **DERT (2009)**.

**Table 9.1** and **Table 9.2** list the different sources of wind-blown and mining-generated dust respectively, together with the proposed best-practice controls.

| Source                             | Control Procedures                                                                                                                                                                                       | To be Applied |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Areas disturbed by mining          | Disturb only the minimum area necessary for mining.<br>Reshape, topsoil and rehabilitate completed overburden<br>emplacement areas as soon as practicable after the<br>completion of overburden tipping. | Yes           |
| Ore handling areas<br>/ stockpiles | Maintain ore handling areas / stockpiles in a moist condition as required using water carts to minimise wind-blown and traffic-generated dust.                                                           | Yes           |
| ROM Stockpiles                     | Have available water carts on ROM stockpiles to minimise the generation of dust.                                                                                                                         | Yes           |

 Table 9.1

 Best Practice Control Procedures for Wind-blown Dust

Table 9.2Best Practice Controls for mine-generated dust

| Source              | Control procedures                                                                                                                                                            | To be Applied |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Haul Road Dust      | All roads and trafficked areas will be watered as required using water trucks to minimise the generation of dust.                                                             | Yes           |
|                     | All haul roads will have edges clearly defined with marker<br>posts or equivalent to control their locations, especially when<br>crossing large overburden emplacement areas. |               |
|                     | Obsolete roads will be ripped and re-vegetated.                                                                                                                               |               |
| Minor roads         | Development of minor roads will be limited and the locations of these will be clearly defined.                                                                                | Yes           |
|                     | Minor roads used regularly for access etc. will be watered.                                                                                                                   |               |
|                     | Obsolete roads will be ripped and re-vegetated.                                                                                                                               |               |
| Topsoil Stripping   | Access tracks used by topsoil stripping equipment during their loading and unloading cycle will be watered.                                                                   | Yes           |
| Topsoil Stockpiling | Long term topsoil stockpiles, not regularly used will be revegetated.                                                                                                         | Yes           |
| Drilling            | Dust aprons will be lowered during drilling.                                                                                                                                  | Yes           |
|                     | Drills will be equipped with dust extraction cyclones, or water injection systems.                                                                                            |               |
|                     | Water injection or dust suppression sprays will be used when high levels of dust are being generated.                                                                         |               |
| Blasting            | Meteorological conditions will be assessed prior to blasting.                                                                                                                 | Yes           |
|                     | Adequate stemming will be used at all times.                                                                                                                                  |               |
| Transfer Points     | All transfer points will be enclosed.                                                                                                                                         | Yes           |
| Processing          | Activities in the processing plant will be dust controlled with<br>the use of fabric filters, sprays, covers or dust collectors.                                              | Yes           |

#### 10 GREENHOUSE GAS ASSESSMENT

#### 10.1 INTRODUCTION

Greenhouse gas emissions have been estimated based upon the methods outlined in the following documents:

6 - 31

- The World Resources Institute/World Business Council for Sustainable Development Greenhouse Gas Protocol (WBCSD/WRI 2004);
- National Greenhouse and Energy Reporting (Measurement) Determination 2008; and
- The Australian Government Department of Climate Change and Energy Efficiency (DCCEE) National Greenhouse Accounts Factors 2010.

The Greenhouse Gas Protocol establishes an international standard for accounting and reporting of greenhouse gas emissions. The Greenhouse Gas Protocol has been adopted by the International Standard Organisation, endorsed by greenhouse gas initiatives (such as the Carbon Disclosure Project) and is compatible with existing greenhouse gas trading schemes.

Three 'scopes' of emissions (scope 1, scope 2 and scope 3) are defined for greenhouse gas accounting and reporting purposes. This terminology has been adopted in Australian greenhouse reporting and measurement methods and has been employed in this assessment. The 'scope' of an emission is relative to the reporting entity, indirect scope 2 and scope 3 emissions will be reportable as direct scope 1 emissions from another facility.

#### 1) Scope 1: Direct Greenhouse Gas Emissions

Direct greenhouse gas emissions are defined as those emissions that occur from sources that are owned or controlled by the reporting entity. Direct greenhouse gas emissions are those emissions that are principally the result of the following types of activities undertaken by an entity:

- Generation of electricity, heat or steam. These emissions result from combustion of fuels in stationary sources, the principal source of greenhouse emissions associated with the operation of the Project;
- Physical or chemical processing. Most of these emissions result from manufacture or processing of chemicals and materials, e.g., the manufacture of cement, aluminium, etc.;
- Transportation of materials, products, waste and employees. These emissions result from the combustion of fuels in entity owned/controlled mobile combustion sources (e.g. trucks, trains, ships, aeroplanes, buses and cars); and
- Fugitive emissions. These emissions result from intentional or unintentional releases (e.g. equipment leaks from joints, seals, packing, and gaskets; methane emissions from coal mines and venting); HFC emissions during the use of refrigeration and air conditioning equipment; and methane leakages from gas transport.

#### 2) Scope 2: Energy Product Use Indirect Greenhouse Gas Emissions

Scope 2 emissions are a category of indirect emissions that account for greenhouse gas emissions from the generation of purchased energy products (principally, electricity, steam/heat and reduction materials used for smelting) by the entity.

Scope 2 in relation to the Project covers purchased electricity, defined as electricity that is purchased or otherwise brought into the organisational boundary of the entity. Scope 2 emissions physically occur at the facility where electricity is generated. Entities report the emissions from the generation of purchased electricity that is consumed in its owned or controlled equipment or operations as scope 2.

#### 3) Scope 3: Other Indirect Greenhouse Gas Emissions

Scope 3 emissions are defined as those emissions that are a consequence of the activities of an entity, but which arise from sources not owned or controlled by that entity. Some examples of Scope 3 activities provided in the Greenhouse Gas Protocol are extraction and production of purchased materials, transportation of purchased fuels, and use of sold products and services.

The Greenhouse Gas Protocol provides that reporting scope 3 emissions is optional. If an organisation believes that Scope 3 emissions are a significant component of the total emissions inventory, these can be reported along with Scope 1 and Scope 2. However, the Greenhouse Gas Protocol notes that reporting Scope 3 emissions can result in double counting of emissions and can also make comparisons between organisations and/or products difficult because reporting is voluntary.

Double counting needs to be avoided when compiling national (country) inventories under the Kyoto Protocol. The Greenhouse Gas Protocol also recognises that compliance regimes are more likely to focus on the "point of release" of emissions (i.e. direct emissions) and/or indirect emissions from the purchase of electricity.

#### 10.2 GREENHOUSE GAS ASSESSMENT POLICY SUMMARY

The National Greenhouse and Energy Reporting Act 2007 (NGER Act) was passed in September 2007. The NGER Act establishes a mandatory corporate reporting system for greenhouse gas emissions, energy consumption and production. The NGER scheme consolidates existing greenhouse reporting schemes. The NGER Act is underpinned by a number of legislative instruments that provide greater detail about obligations, which in conjunction with the NGER Act, form the National Greenhouse and Energy Reporting System, as follows:

- The National Greenhouse and Energy Reporting Regulations 2008; and
- The National Greenhouse and Energy Reporting (Measurement) Determination 2008.

NGER is seen as an important first step in the establishment of a domestic emissions trading scheme. Companies must register and report if they emit greenhouse emissions or produce/consume energy at or above the following trigger thresholds:

- If they own facilities that emit greater than 25 kilotonnes (kt) greenhouse emissions (expressed as CO<sub>2</sub>-e) or produce consume greater than 100 terajoules (TJ) of energy; and
- If the corporate group emits greater than 125 kt of greenhouse emissions (expressed as CO<sub>2</sub>-e) or produce consume greater than 500 TJ of energy.

Scope 1 and Scope 2 greenhouse gas emissions are required to be reported under the NGER Act.

#### 10.3 GREENHOUSE GAS EMISSION ESTIMATES

Inventories of greenhouse gas emissions can be calculated using published emission factors. Different gases have different greenhouse warming effects (referred to as global warming potentials) and emission factors take into account the global warming potentials of the gases created during combustion. The estimated emissions are referred to in terms of carbon dioxide equivalent or  $CO_2$ -equivalent ( $CO_2$ -e) emissions by applying the relevant global warming potential.

The greenhouse gas assessment has been conducted using the National Greenhouse Accounts (NGA) Factors, published by the Department of Climate Change and Energy Efficiency (**DCCEE**, **2010**). Project-related greenhouse gas sources included in the assessment are as follows:

- Diesel combustion during mine operations Scope 1;
- Indirect emissions resulting from off-site diesel extraction and transport -Scope 3;
- Explosives (ANFO) used in blasting Scope 1;
- LPG used in processing operations Scope 1; and
- Indirect emissions resulting from the consumption of purchased electricity Scope 2 and Scope 3.

Emissions from the shipping of product are not included in this assessment due to the difficulties in emission estimates, including uncertainty in export markets and destination of product into the future and limited data on emission factors and / or fuel consumption for ocean going vessels.

#### 10.3.1 Emission Factors

Data provided in the National Greenhouse Accounts (NGA) Factors, published by the Commonwealth Department of Climate Change (DCC) (**DCC**, **2009a**) were used. DCC defines three 'scopes' (or emission categories):

 Table 10.1 provides a summary of the emission factors used.

| Table 10.1                                                |
|-----------------------------------------------------------|
| Summary of Emission Factors for Greenhouse Gas Assessment |

6 - 34

| Emission Source                   | Emis | sion Factor                    | Energy | Content | Scope | Source                         |
|-----------------------------------|------|--------------------------------|--------|---------|-------|--------------------------------|
| Diesel - Non-transport activities | 69.5 | kg CO <sub>2</sub> -e/GJ       | 38.6   | GJ/kL   | 1     | Table 3 ( <b>DCC, 2009a</b> )  |
|                                   | 5.3  | kg CO <sub>2</sub> -e/GJ       | 39.6   | GJ/kL   | 3     | Table 38 ( <b>DCC, 2009a</b> ) |
| LPG - Processing                  | 59.9 | kg CO <sub>2</sub> -e/GJ       | 25.7   | GJ/kL   | 1     | Table 3 ( <b>DCC, 2009a</b> )  |
| Flootrigity                       | 0.89 | kg CO <sub>2</sub> -e/kWh      | -      | -       | 2     | Table 39 ( <b>DCC, 2009a</b> ) |
| Electricity                       | 0.18 | kg CO <sub>2</sub> -e/kWh      | -      | -       | 3     | Table 3 ( <b>DCC, 2009a</b> )  |
| Explosives (ANFO)*                | 0.17 | CO <sub>2</sub> /tonne product | -      | -       | 1     | Table 4 ( <b>DCC, 2008a</b> )  |

It is noted that the AGO Factors and Methods were replaced by the NGA Factors (**DCC**, **2009a**), however the emission factor for explosives was dropped from the latest version. Emissions from explosives do not have to be reported under NGERS.

#### 10.3.2 Scope 1 Emissions

#### 10.3.2.1 Fuel Consumption

Based on information provided by Alkane, **Table 10.2** presents a summary of annual on-site diesel and LPG fuel usage.

| Operational year           | Diesel usage per year (L) | LPG usage per year (L) |  |
|----------------------------|---------------------------|------------------------|--|
| Construction (4-5 months)* | 446,206                   | -                      |  |
| Year 1                     | 5,569,152                 | 418,080                |  |
| Year 2                     | 5,579,844                 | 418,080                |  |
| Year 3                     | 5,668,976                 | 418,080                |  |
| Year 4                     | 5,438,036                 | 418,080                |  |
| Year 5                     | 4,058,756                 | 418,080                |  |
| Year 6                     | 1,354,689                 | 418,080                |  |
| Year 7                     | 340,000                   | 418,080                |  |
| Year 8                     | 340,000                   | 418,080                |  |
| Total (L)                  | 28,795,659                | 3,344,640              |  |

Table 10.2Summary of On-site Diesel and LPG Usage

\* There will be a total of 12 months construction at the site however; the Project will begin operating within 4-5 months of construction commencing. It has been assumed that all fuel used during the initial construction period will be diesel.
 N.B: Years 6, 7 and 8 will be underground mining only.
 Source: Alkane Resources Ltd

Energy content factors used are provided in Table 10.1.

The following formula (**DCC**, **2009a**) was used to estimate the greenhouse gas emissions from fuel usage:

*GHG Emissions* 
$$tCO_2 - e = \frac{Q \times EC \times EF}{1000}$$
 Equation 1

Where:

| Q  | = | quantity of fuel in tonnes or thousands of litres    |
|----|---|------------------------------------------------------|
| EC | = | energy content of the fuel in GJ/tonne or GJ/kL      |
| EF | = | relevant emission factor in kg CO <sub>2</sub> -e/GJ |

Fuel consumption emission factors used are provided in **Table 10.1**.

The projected GHG emissions from Diesel and LPG usage are presented in Table 10.3.

| Operational year          | Diesel CO <sub>2</sub> -e emissions (t CO <sub>2</sub> -e/y) | LPG CO <sub>2</sub> -e emissions (t CO <sub>2</sub> -e/y) |
|---------------------------|--------------------------------------------------------------|-----------------------------------------------------------|
| Construction (4-5 months) | 1,197                                                        | -                                                         |
| Year 1                    | 14,940                                                       | 644                                                       |
| Year 2                    | 14,969                                                       | 644                                                       |
| Year 3                    | 15,208                                                       | 644                                                       |
| Year 4                    | 14,589                                                       | 644                                                       |
| Year 5                    | 10,888                                                       | 644                                                       |
| Year 6                    | 3,634                                                        | 644                                                       |
| Year 7                    | 912                                                          | 644                                                       |
| Year 8                    | 912                                                          | 644                                                       |
| Total                     | 77,250                                                       | 5,149                                                     |

 Table 10.3

 Estimated (Scope 1) CO<sub>2</sub>-e Emissions from Consumption of Fuels on the Mine Site

# 10.3.2.2 ANFO Usage

Based on information provided by Alkane, **Table 10.4** presents a summary of annual on-site explosives (ANFO) usage.

| Operational year          | ANFO usage per year (t/y) |  |
|---------------------------|---------------------------|--|
| Construction (4-5 months) | 280                       |  |
| Year 1                    | 2,948                     |  |
| Year 2                    | 2,816                     |  |
| Year 3                    | 1,940                     |  |
| Year 4                    | 1,285                     |  |
| Year 5                    | 81                        |  |
| Year 6                    | 276                       |  |
| Year 7                    | 408                       |  |
| Year 8                    | 239                       |  |
| Total                     | 10,273                    |  |

Table 10.4 Summary of On-site ANFO Usage (t/y)

To calculate emissions from explosives, the following equation was used:

GHG Emissions = Q x EFGHG Emissions  $tCO_2 - e = Q \times \frac{EF}{1000}$ Equation 3

Where:Q =explosives used in tEF =relevant emission factor in t CO<sub>2</sub>/t product

Explosives usage emission factors used are provided in Table 10.1.

The projected GHG emissions from explosives (ANFO) usage are presented in Table 10.5.

# Table 10.5

#### Estimated (Scope 1) CO<sub>2</sub>-e Emissions from Explosives (ANFO) Use on the Mine Site

| Operational year          | Explosives (ANFO) CO <sub>2</sub> -e emissions (t CO <sub>2</sub> -e/y) |
|---------------------------|-------------------------------------------------------------------------|
| Construction (4-5 months) | 48                                                                      |
| Year 1                    | 501                                                                     |
| Year 2                    | 479                                                                     |
| Year 3                    | 330                                                                     |
| Year 4                    | 218                                                                     |
| Year 5                    | 14                                                                      |
| Year 6                    | 47                                                                      |
| Year 7                    | 69                                                                      |
| Year 8                    | 41                                                                      |
| Total                     | 1,746                                                                   |

# 10.3.3 Scope 2 Emissions

#### 10.3.3.1 Electricity Consumption

Based on information provided by Alkane, electricity consumption on-site would be approximately 34.5GWhr/yr with a total usage of 276GWhr for the life of the Project.

**Table 10.6** presents a summary of purchased electricity consumption.

| Operational year          | Electricity consumption per year (GWh) |  |  |
|---------------------------|----------------------------------------|--|--|
| Construction (4-5 months) | -                                      |  |  |
| Year 1                    | 34.5                                   |  |  |
| Year 2                    | 34.5                                   |  |  |
| Year 3                    | 34.5                                   |  |  |
| Year 4                    | 34.5                                   |  |  |
| Year 5                    | 34.5                                   |  |  |
| Year 6                    | 34.5                                   |  |  |
| Year 7                    | 34.5                                   |  |  |
| Year 8                    | 34.5                                   |  |  |
| Total                     | 276                                    |  |  |

Table 10.6Summary of Consumption of Purchased Electricity (GWh)

To calculate emissions from electricity usage, the following equation was used:

*GHG Emissions* 
$$tCO_2 - e = Q \times \frac{EF}{1000}$$
 Equation 2

Where:

Q = electricity consumed in GJ EF = relevant emission factor in kg CO<sub>2</sub>-e/GJ

Electricity consumption (Scope 2) emission factors used are provided in Table 10.1.

The projected GHG emissions from purchased electricity usage are presented in Table 10.7.

| Operational year          | Electricity CO <sub>2</sub> -e emissions (t CO <sub>2</sub> -e/y) |  |  |
|---------------------------|-------------------------------------------------------------------|--|--|
| Construction (4-5 months) | -                                                                 |  |  |
| Year 1                    | 30,705                                                            |  |  |
| Year 2                    | 30,705                                                            |  |  |
| Year 3                    | 30,705                                                            |  |  |
| Year 4                    | 30,705                                                            |  |  |
| Year 5                    | 30,705                                                            |  |  |
| Year 6                    | 30,705                                                            |  |  |
| Year 7                    | 30,705                                                            |  |  |
| Year 8                    | 30,705                                                            |  |  |
| Total                     | 245,640                                                           |  |  |

 Table 10.7

 Estimated (Scope 2) CO<sub>2</sub>-e Emissions from Electricity Consumption

# 10.3.4 Scope 3 Emissions

#### 10.3.4.1 Diesel Extraction and Transport

Based on information provided by Alkane, **Table 10.2** presents a summary of diesel consumption at the Project site. These values are used to calculate the GHG emissions from diesel extraction and transport before use by the proponent. Equation 1 in **Section 10.4.3.1** was used to calculate emissions from diesel extraction and transport.

Diesel extraction and transport (Scope 3) emission factors used are provided in **Table 10.1**.

The projected GHG emissions from the extraction and transport of diesel are presented in **Table 10.8**.

| Operational year          | Diesel CO <sub>2</sub> -e emissions (t CO <sub>2</sub> -e/y) |  |  |
|---------------------------|--------------------------------------------------------------|--|--|
| Construction (4-5 months) | 91                                                           |  |  |
| Year 1                    | 1,139                                                        |  |  |
| Year 2                    | 1,142                                                        |  |  |
| Year 3                    | 1,160                                                        |  |  |
| Year 4                    | 1,113                                                        |  |  |
| Year 5                    | 830                                                          |  |  |
| Year 6                    | 277                                                          |  |  |
| Year 7                    | 70                                                           |  |  |
| Year 8                    | 70                                                           |  |  |
| Total                     | 5,891                                                        |  |  |

 Table 10.8

 Estimated (Scope 3) CO<sub>2</sub>-e Emissions from the Extraction and Transport of Diesel

# 10.3.4.2 Generation of Purchased Electricity

Based on information provided by Alkane, **Table 10.6** presents a summary of purchased electricity consumption at the Project site. These values are used to calculate the GHG emissions from electricity generated off-site before purchase by the proponent. Equation 2 in **Section 10.4.5.1** was used to calculate emissions from electricity generation.

Electricity generation emission factors used are provided in **Table 10.1**.

The projected GHG emissions from the generation of purchased electricity usage are presented in **Table 10.9**.

| Table 10.9                                                                                        |
|---------------------------------------------------------------------------------------------------|
| Estimated (Scope 3) CO <sub>2</sub> -e Emissions from the Generation of Purchased Electricity Use |

| Operational year          | Electricity CO <sub>2</sub> -e emissions (t CO <sub>2</sub> -e/y) |  |  |  |
|---------------------------|-------------------------------------------------------------------|--|--|--|
| Construction (4-5 months) | -                                                                 |  |  |  |
| Year 1                    | 6,210                                                             |  |  |  |
| Year 2                    | 6,210                                                             |  |  |  |
| Year 3                    | 6,210                                                             |  |  |  |
| Year 4                    | 6,210                                                             |  |  |  |
| Year 5                    | 6,210                                                             |  |  |  |
| Year 6                    | 6,210                                                             |  |  |  |
| Year 7                    | 6,210                                                             |  |  |  |
| Year 8                    | 6,210                                                             |  |  |  |
| Total                     | 49,680                                                            |  |  |  |

# 10.4 GREENHOUSE GAS EMISSIONS RESULTS

A summary of the total GHG emissions associated with the Project are presented in **Table 10.10**.

| Year                      | Scope 1 | Scope 2 | Scope 3 | Total   |
|---------------------------|---------|---------|---------|---------|
| Construction (4-5 months) | 1,245   | -       | 91      | 1,336   |
| Year 1                    | 16,085  | 30,705  | 7,349   | 54,139  |
| Year 2                    | 16,091  | 30,705  | 7,352   | 54,148  |
| Year 3                    | 16,182  | 30,705  | 7,370   | 54,256  |
| Year 4                    | 15,451  | 30,705  | 7,323   | 53,478  |
| Year 5                    | 11,546  | 30,705  | 7,040   | 49,291  |
| Year 6                    | 4,325   | 30,705  | 6,487   | 41,517  |
| Year 7                    | 1,625   | 30,705  | 6,280   | 38,610  |
| Year 8                    | 1,596   | 30,705  | 6,280   | 38,581  |
| Total                     | 84,145  | 245,640 | 55,571  | 385,356 |

Table 10.10 Summary of Estimated CO<sub>2</sub>-e Emissions (t CO<sub>2</sub>-e/y)

The annual greenhouse emissions in NSW for 2008 were 156.4Mt (**DCCEE**, **2010**). **Table 10.11** presents the  $CO_2$ -e emission percentage increase for each year of the Project's operations above the NSW 2008 greenhouse emission estimate. These estimates include all scope emissions.

 Table 10.11

 Summary of Estimated Percentage Increase CO<sub>2</sub>-e Emissions (t CO<sub>2</sub>-e/y)

| Year                      | % Increase from NSW 2008 greenhouse emissions |
|---------------------------|-----------------------------------------------|
| Construction (4-5 months) | 0.001                                         |
| Year 1                    | 0.035                                         |
| Year 2                    | 0.035                                         |
| Year 3                    | 0.035                                         |
| Year 4                    | 0.034                                         |
| Year 5                    | 0.032                                         |
| Year 6                    | 0.027                                         |
| Year 7                    | 0.025                                         |
| Year 8                    | 0.025                                         |

For the life of the Project, it has been estimated that the development would release approximately  $0.38Mt CO_2$ -e (all scopes emissions). The maximum annual increase of emissions would be in Years 1, 2 and 3 which would represent an approximate annual contribution of 0.04% to baseline 2008 NSW emissions.

# 11 CONCLUSIONS

This report has assessed the air quality associated with the proposed Tomingley Gold Project in central west New South Wales.

Three operating scenarios have been assessed to represent the potential air quality impacts that the Project would have on sensitive receptors (e.g. residences) in the proximity of the Mine Site.

Dispersion modelling has been used to assess the impact that dust emissions from the operation would have on the local air quality. The emissions inventories developed for each of the three stages have been used with local meteorological data and a modified version of the US EPA's ISCST3 model to predict the maximum 24-hour  $PM_{10}$ , annual average  $PM_{10}$ , annual average TSP and annual average dust deposition (insoluble solids). The modelling has been undertaken to show the effects of the Tomingley Gold Project alone and with background dust levels considered.

It is concluded that air quality impacts would not exceed the annual assessment criteria at any of the surrounding sensitive receptors.

Based on a conservative assessment, modelling results for cumulative  $PM_{10}$  24-hour impacts show predicted exceedances of the criterion at the following sensitive receptors:

- Scenario 2 Receptors 3, 28, 29, 32, 33 and 40.
- Scenario 3 Receptors 3, 28, 29, 32, 33 and 40.
- Scenario 4 Receptors 3 and 29.

A greenhouse gas assessment has been conducted using the National Greenhouse Accounts Factors. A project is required to report to the NGER system if it will emit greater than 25kt of greenhouse emissions. As such, the Project would be subject to the reporting under the system. For the life of the Project, it has been estimated that the development would release approximately 0.38Mt CO<sub>2</sub>-e (all scope emissions). The maximum annual increase of emissions would be in Years 1, 2 and 3 which would represent an approximate contribution of 0.04% (all scope emissions) to baseline 2008 NSW emissions.

# 12 **REFERENCES**

#### Arya S P (1999)

Report No. 616/06

"Air Pollution Meteorology and Dispersion" Published by Oxford University Press (Page 202 and 208).

#### Bureau of Meteorology (2009)

Climatic Averages Australia, Bureau of Meteorology website, www.bom.gov.au

#### CSIRO (2003)

The Air Pollution Model (TAPM)

#### DCC (2008a)

"Carbon Pollution Reduction Scheme. Green Paper" July 2008. Published by the Department of Climate Change. Available from <u>http://www.climatechange.gov.au/</u>

#### DCC (2008b)

"Carbon Pollution Reduction Scheme. Australia's Low Pollution Future. White Paper" December 2008. Published by the Department of Climate Change. Available from http://www.climatechange.gov.au/

#### DCC (2009a)

"National Greenhouse Account (NGA) Factors" June 2009. Published by the Department of Climate Change. Available from http://www.climatechange.gov.au/

# DCC (2009b)

"State and Territory Greenhouse Gas Inventories 2007". May 2009. Published by the Department of Climate Change. Available from http://www.climatechange.gov.au/

#### **DCCEE (2010)**

"National Greenhouse Account (NGA) Factors" July 2010. Published by the Department of Climate Change and Energy Efficiency. http://www.climatechange.gov.au/

#### DERT (2009)

"Leading Practice Sustainable Development Program for the Mining Industry". Published by the Department of Resources, Energy and Tourism, October 2009.

#### Environment Australia (1998)

"Best Practice Environmental Management in Mining: Dust Control" Environment Australia, Department of the Environment, 1998. ISBN 0 642 54570 7

 Hanna S.R., Briggs G.A., Deardorff J.C., Egan B.A., Gifford F.A. and Pasquill F (1977)
 "AMS Workshop on Stability Classification Schemes and Sigma Curves – Summary of Recommendations" concerning the adjustment of sigma-curves" Bulletin American Meteorological Society, Volume 58, Number 12, 1305-1309.

#### Holmes N E, Lakmaker S and Charnock N (2007)

"The performance of dispersion models in predicting maximum 24-hour PM<sub>10</sub> concentrations from open cut coal mines" Conference Proceedings of the 18<sup>th</sup> CASANZ Conference, 9-13 September 2007, Brisbane

#### Hurley, P. J (1999)

'The Air Pollution Model (TAPM) Version 1: User Manual', CSIRO Research Internal Paper No. 12, October 1999.

#### IPCC (2007)

"Climate Change 2007: Synthesis Report". An Assessment of the Intergovernmental Panel on Climate Change.

IPPC (2009) IPPC website http://www.ipcc.ch/about/index.htm (accessed 9th April 2009)

#### Katestone Environmental Pty Ltd (2010)

"NSW Coal Mining Benchmarking Study: International Best Practice Measures to Prevent and/or Minimise Emissions of Particulate Matter from Coal Mining" Katestone Environmental Pty Ltd prepared for DECCW, 2010.

#### NEPC (1998)

Environment Protection and Heritage Council website, <u>www.ephc.gov.au</u>

#### NEPC (2003)

Protection and Heritage Council website, <u>www.ephc.gov.au</u>

#### NPI (2006),

Emission Estimation Technique Manual for Gold Ore Processing Version 2.0.

#### NSW DEC (2005)

"Approved Methods and Guidance for the Modelling and Assessment of Air Pollutants in NSW", August 2005.

Peak Hill Gold Mine (2001) Annual Environmental Management Report 'Section 5: Specific Site Environmental Management'.

Peak Hill Gold Mine (2002) Annual Environmental Management Report 'Section 5: Specific Site Environmental Management'.

Peak Hill Gold Mine (1997) Mining, Rehabilitation and Environmental Management Plan

Personal communication with Pavel Zib 18<sup>th</sup> April 2009

#### Powell (1976)

"A Formulation of Time-varying Depths of Daytime Mixed Layer and Nighttime Stable Layer for use in Air Pollution Assessment Models", Annual Report for 1976 Part 3, Battelle PNL Atmospheric Sciences, 185-189.

Puri, K., Dietachmayer, G. S., Mills, G. A., Davidson, N. E., Bowen, R. A., and Logan, L. W. (1997)

'The BMRC Limited Area Prediction System, LAPS'. Aust. Met. Mag., 47, 203-223.

#### SPCC (1983)

Report No. 616/06

"Air Pollution from Coal Mining and Related Developments", Published by NSW State Pollution Control Commission (now NSW DECC).

#### SPCC (1986)

"Particle size distributions in dust from open cut coal mines in the Hunter Valley", Report Number 10636-002-71, Prepared for the State Pollution Control Commission of NSW (now EPA) by Dames & Moore, 41 McLaren Street, North Sydney, NSW 2060.

#### The Allen Consulting Group (2001)

"Greenhouse Emissions Trading. Implications and Opportunities for the Australian Transport Sector" Report to the National Transport Secretariat.

UNFCCC (2009) Press Release: Copenhagen United Nations Climate Change Conference ends with political agreement to cap temperature rise, reduce emissions and raise finance, United Nations Framework Convention on Climate Change. <u>http://unfccc.int/files/press/news\_room/press\_releases\_and\_advisories/application/pdf/pr\_ \_\_cop15\_20091219.pdf</u> (accessed 17 March 2009)

#### US EPA (1985)

"Compilation of Air Pollutant Emission Factors", AP-42, Fourth Edition United States Environmental Protection Agency, Office of Air and Radiation Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina 27711.

#### US EPA (1995a)

"User's Guide for the Industrial Source Complex (ISC3) Dispersion Models - Volume 1 User's Instructions" US Environmental Protection Agency, Office of Air Quality Planning and Standards Emissions, Monitoring and Analysis Division, Research Triangle Park, North Carolina 27711.

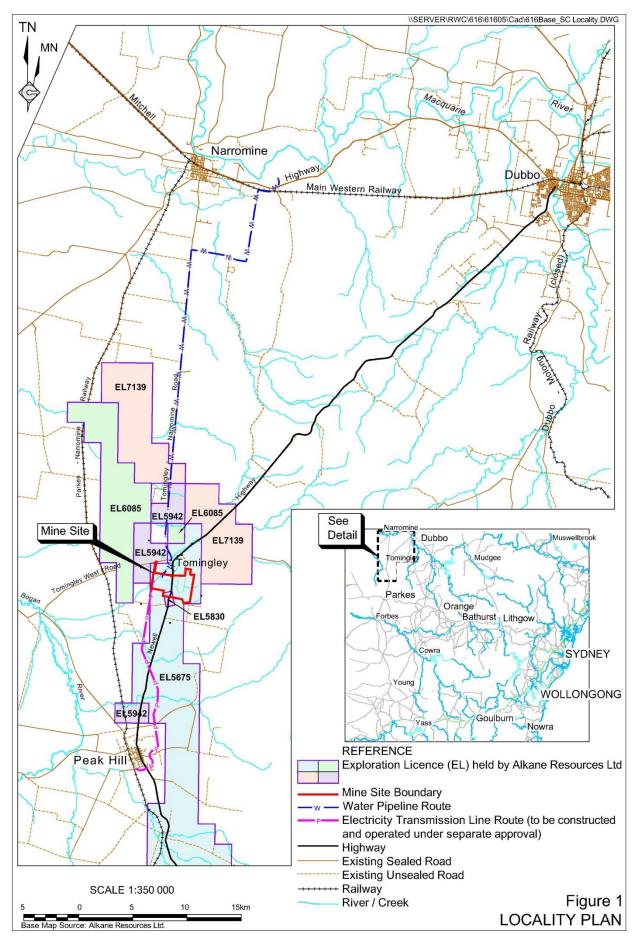
#### Venkatram (1980)

"Estimating the Monin-Obukhov Length in the Stable Boundary Layer for Dispersion Calculations", Boundary-Layer Meteorology, Volume 19, 481-485.

# **FIGURES**

6 - 43

(No. of pages including blank pages = 38)


(Note: Figures 15 to 34 are provided in colour on the Project CD)

Report No. 616/06

This page has intentionally been left blank

6 - 44

ALKANE RESOURCES LTD Tomingley Gold Project Report No. 616/06



PAEHolmes

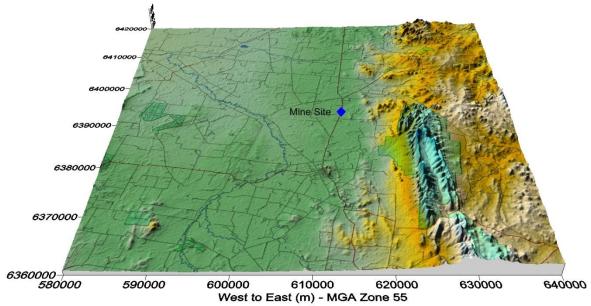
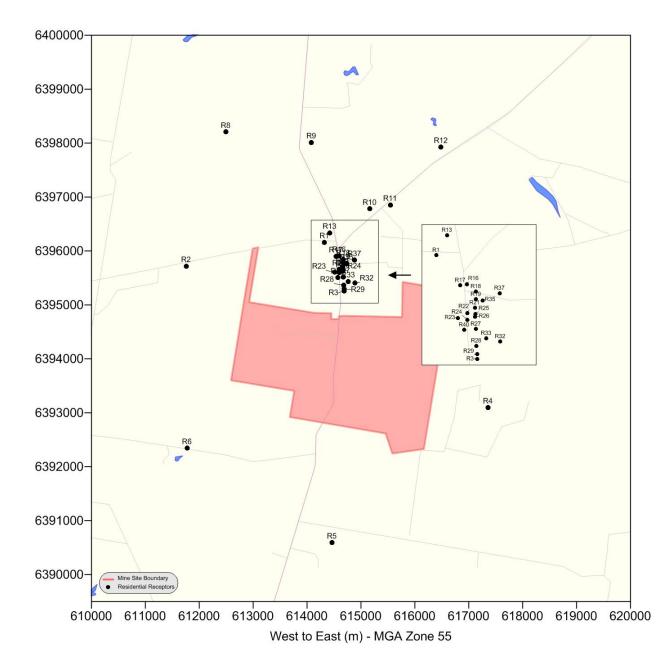
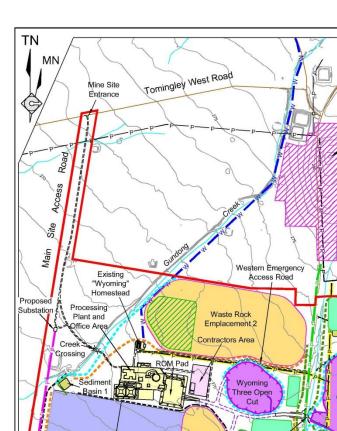
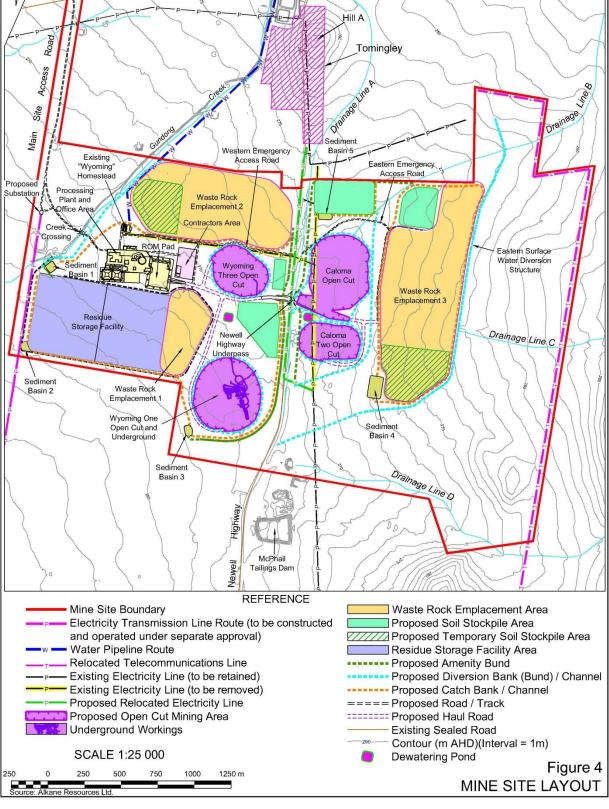


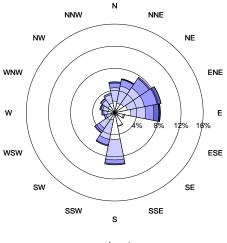

Figure 2: Pseudo 3D plot of local terrain

6 - 47



Figure 3: Location of Sensitive Receptors

ALKANE RESOURCES LTD Tomingley Gold Project

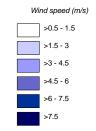

Report No. 616/06

\\SERVER\RWC\616\61605\Cad\616Base\_Air 4.DWG





6 - 49




#### Annual Calms = 24.6%

Ν

w

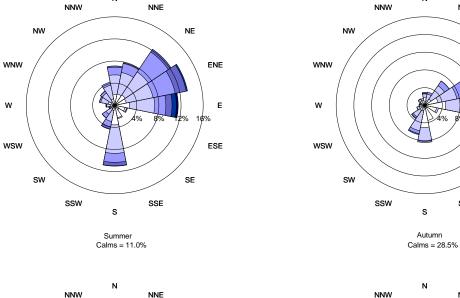
## Annual and seasonal windroses for Peak Hill Mine Site (Alkane operated), 2003

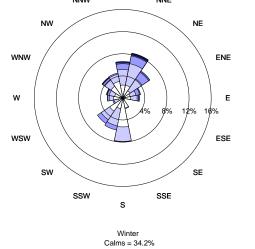


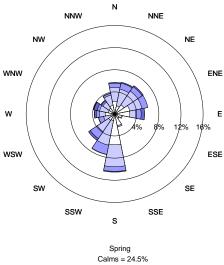
Ν

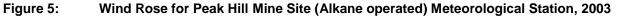
NNE

NE

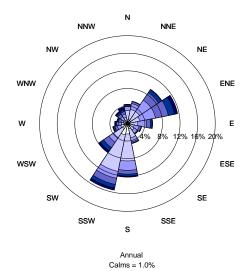

SE


SSE

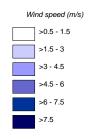

ENE

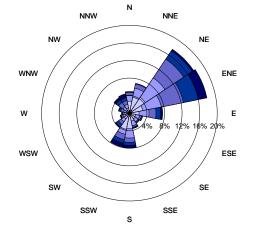

Е

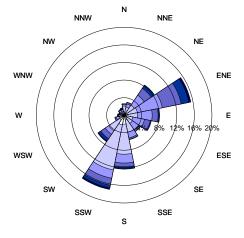
ESE





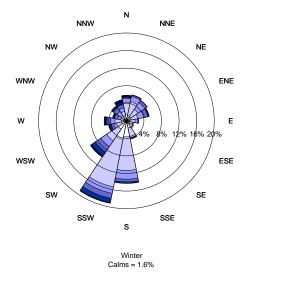



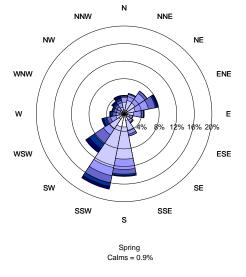





*Tomingley Gold Project Report No. 616/06* 

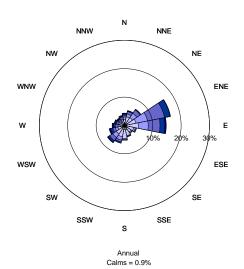


# Annual and seasonal windroses for Toongi (Alkane site), 2003

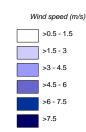






Autumn Calms = 1.0%





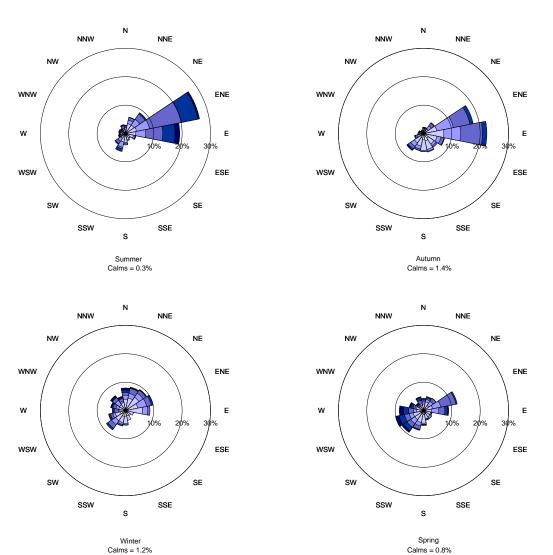
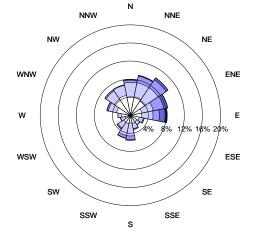


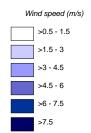





#### Annual and seasonal windroses for Tomingley (TAPM), 2003



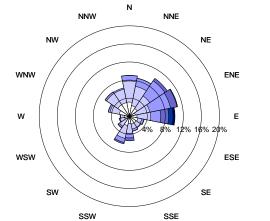





Figure 7: Wind Rose for Tomingley – TAPM generated, 2003

PAEHolmes

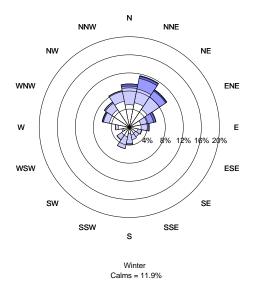


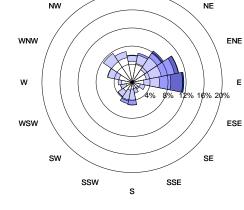
Annual Calms = 8.9%


# Annual and seasonal windroses for Tomingley with Peak Hill observations (TAPM, 2003)



Ν


NNE


NNW



Summer Calms = 4.6%

s





Autumn Calms = 10.3%

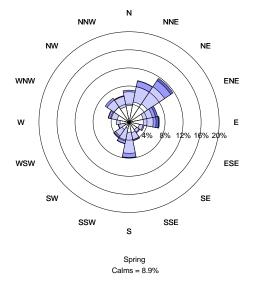



Figure 8: Wind Rose for Tomingley (TAPM) with Peak Hill (Alkane operated) observations, 2003

6 - 52

6 - 53

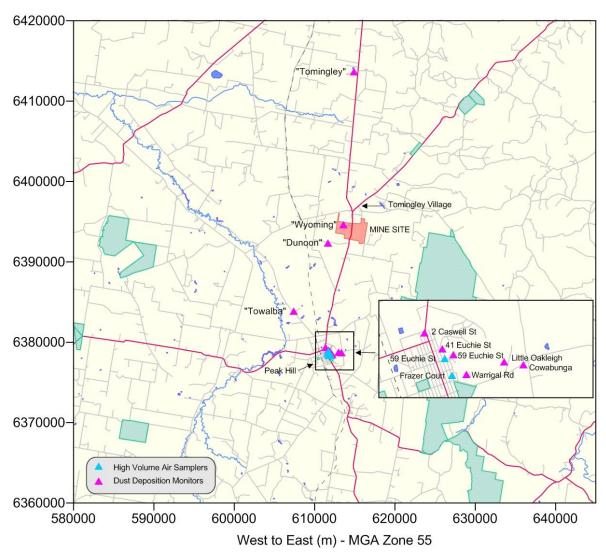



Figure 9: Location of Dust Deposition Monitors and High Volume Air Samplers (HVAS)

#### SPECIALIST CONSULTANT STUDIES

Part 6: Air Quality Assessment

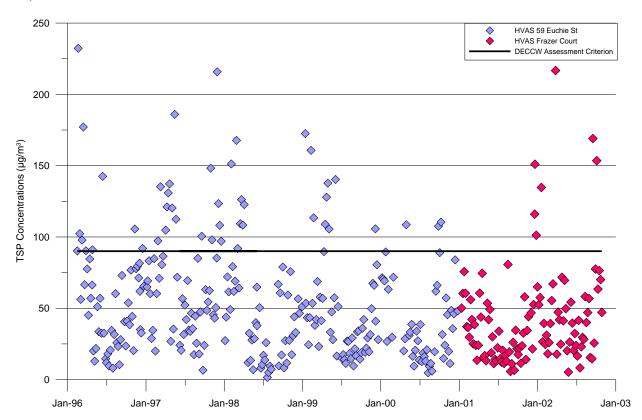



Figure 10: High Volume Air Sampler (HVAS) TSP Concentrations

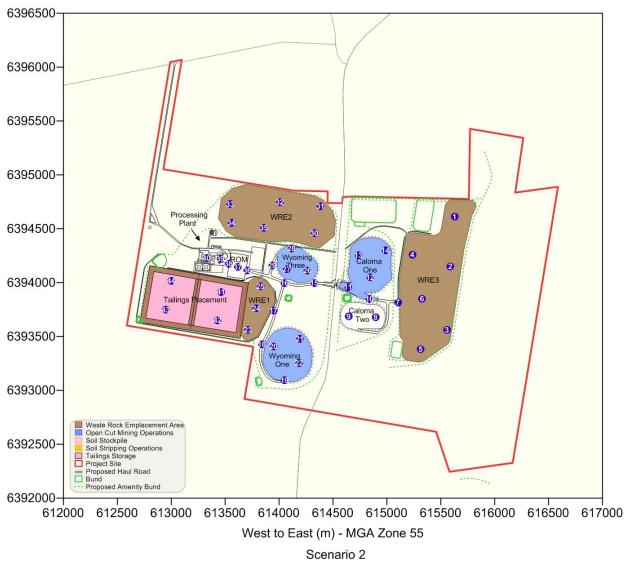
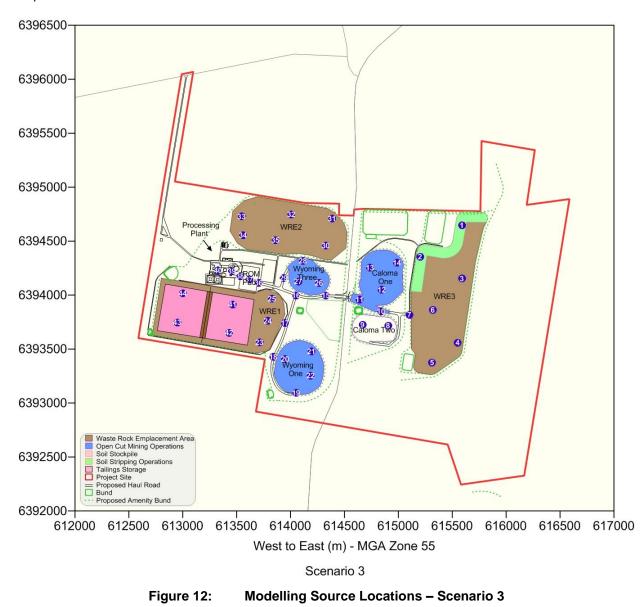




Figure 11: Modelling Source Locations – Scenario 2






Figure 13: Modelling Source Locations – Scenario 4

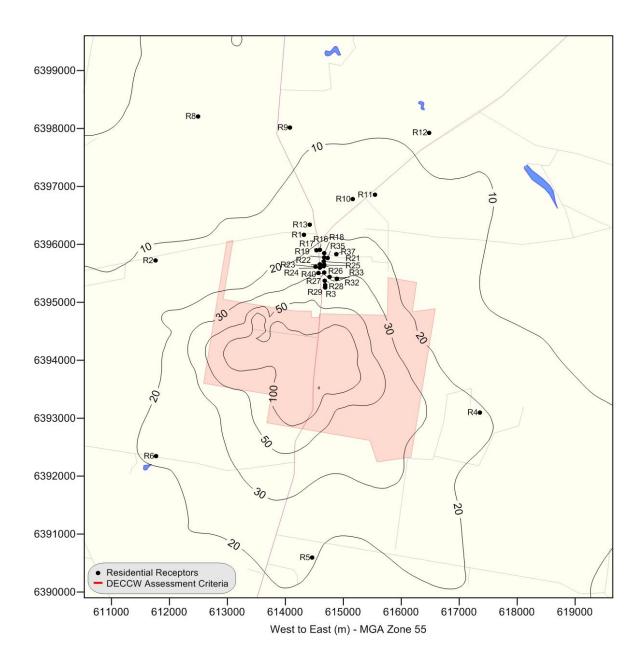



Figure 14: Scenario 2 - Predicted 24-hour average PM<sub>10</sub> concentrations (μg/m<sup>3</sup>) due to emissions from the Project alone

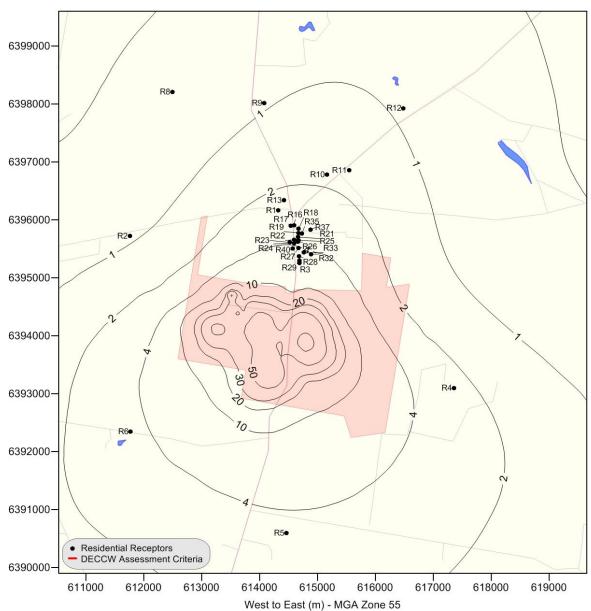



Figure 15: Scenario 2 - Predicted annual average PM<sub>10</sub> concentrations (μg/m<sup>3</sup>) due to emissions from the Project alone

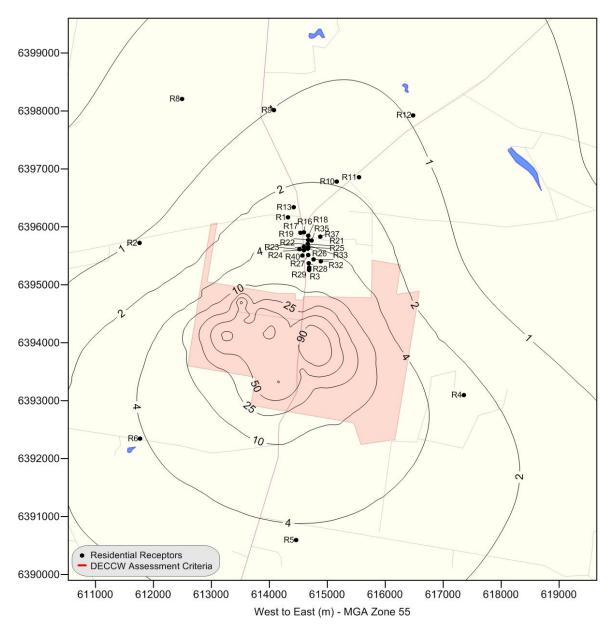



Figure 16: Scenario 2 - Predicted annual average TSP concentrations (µg/m<sup>3</sup>) due to emissions from the Project alone

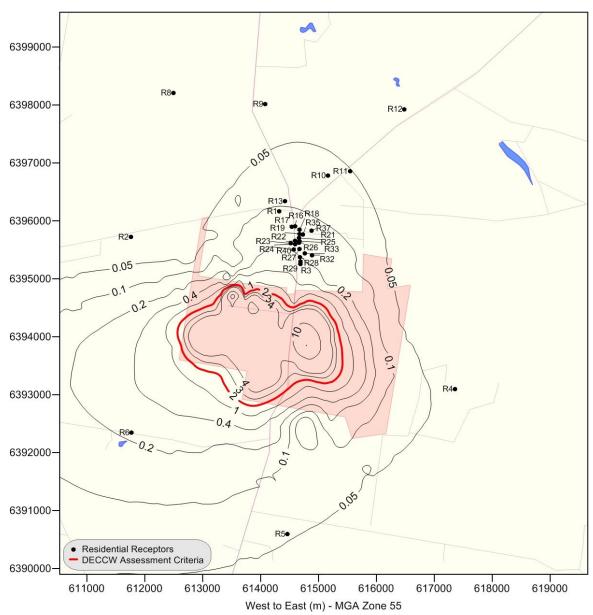



Figure 17: Scenario 2 - Predicted dust deposition levels (g/m<sup>2</sup>/month) due to emissions from the Project alone

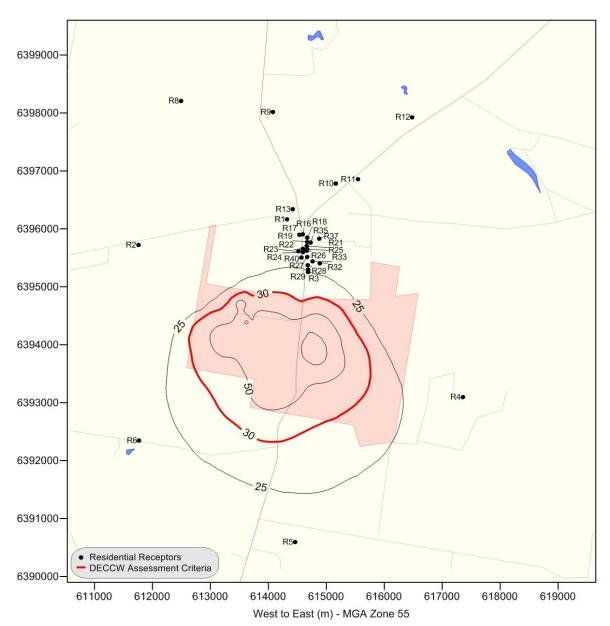



Figure 18: Scenario 2 - Predicted annual average PM<sub>10</sub> concentrations (μg/m<sup>3</sup>) due to emissions from the Project and other sources

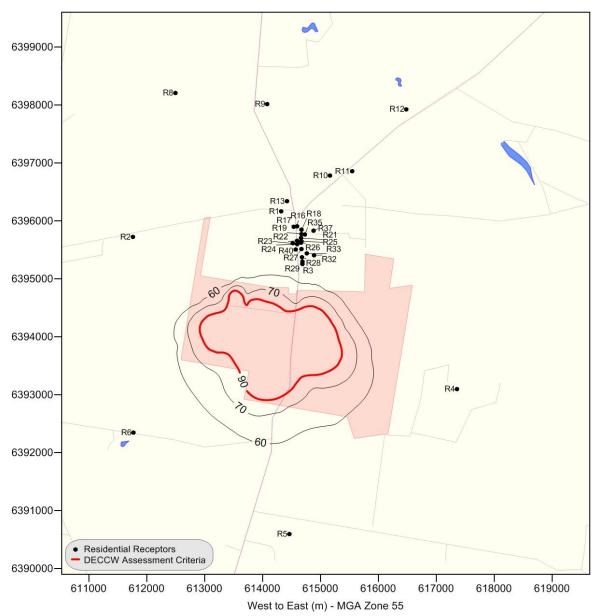



Figure 19: Scenario 2 - Predicted annual average TSP concentrations (μg/m<sup>3</sup>) due to emissions from the Project and other sources

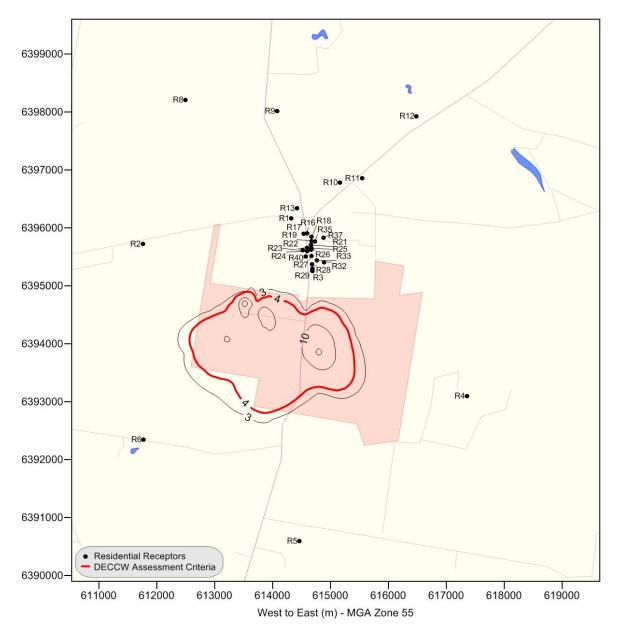



Figure 20: Scenario 2 - Predicted dust deposition levels (g/m<sup>2</sup>/month) due to emissions from the Project and other sources

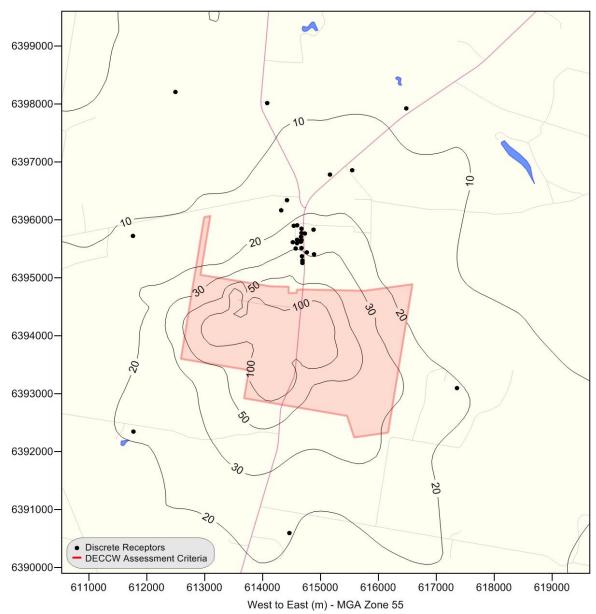



Figure 21: Scenario 3 - Predicted 24-hour average PM<sub>10</sub> concentrations (µg/m<sup>3</sup>) due to emissions from the Project alone

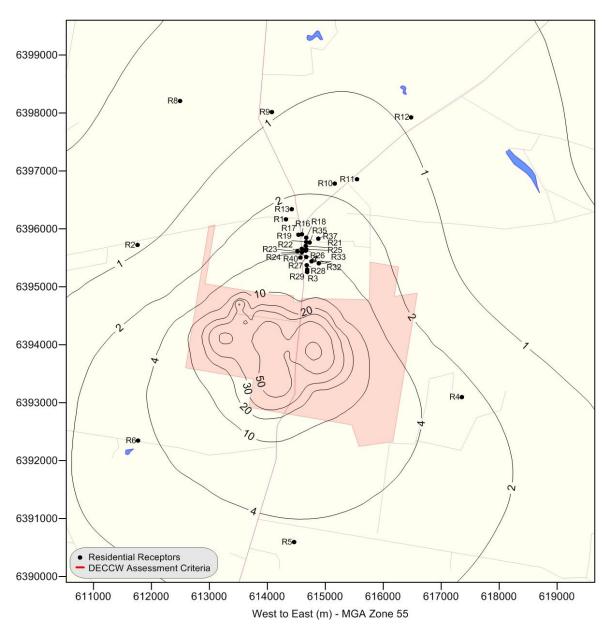



Figure 22: Scenario 3 - Predicted annual average PM<sub>10</sub> concentrations (μg/m<sup>3</sup>) due to emissions from the Project alone

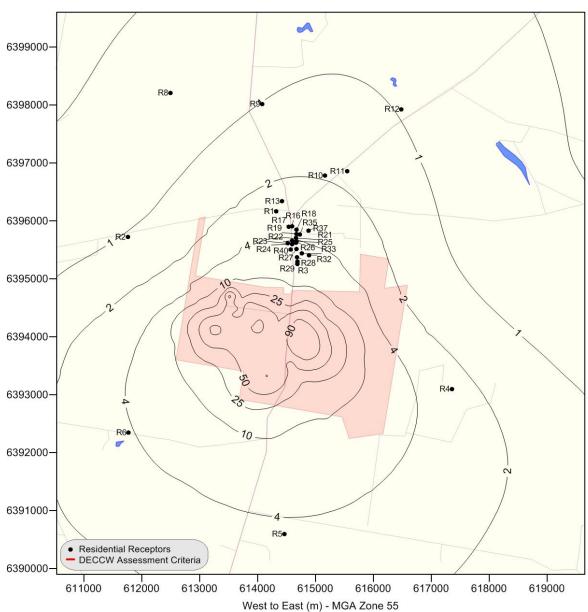



Figure 23: Scenario 3 - Predicted annual average TSP concentrations (μg/m<sup>3</sup>) due to emissions from the Project alone

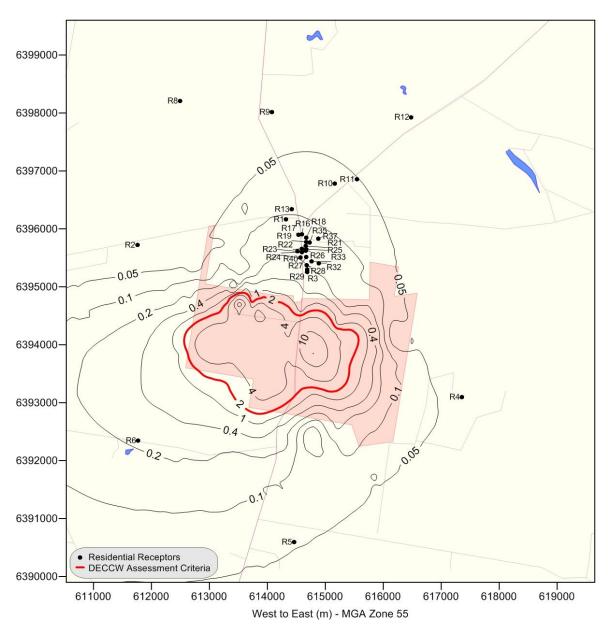



Figure 24: Scenario 3 - Predicted dust deposition levels (g/m<sup>2</sup>/month) due to emissions from the Project alone

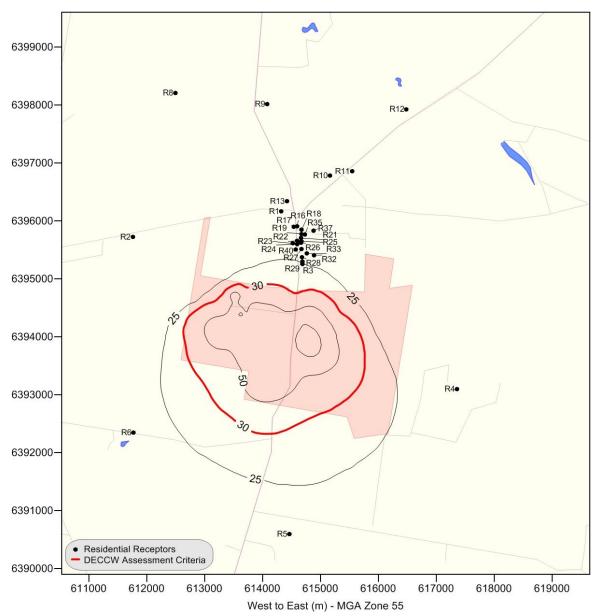



Figure 25: Scenario 3 - Predicted annual average PM<sub>10</sub> concentrations (μg/m<sup>3</sup>) due to emissions from the Project and other sources

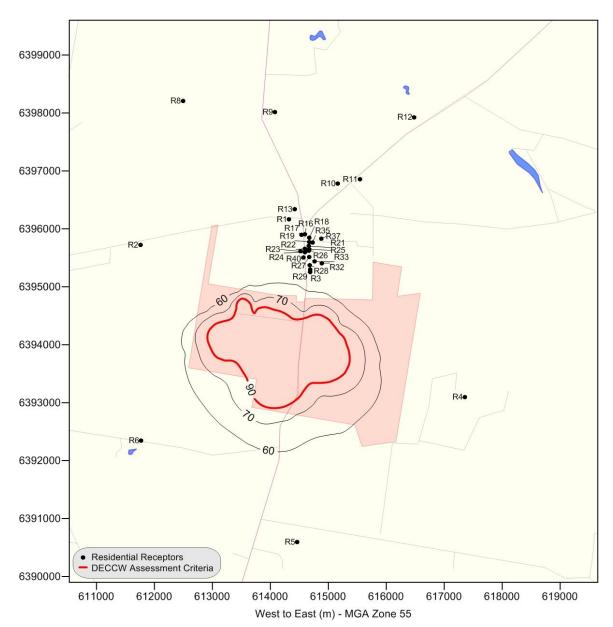



Figure 26: Scenario 3 - Predicted annual average TSP concentrations (µg/m<sup>3</sup>) due to emissions from the Project and other sources

**SPECIALIST CONSULTANT STUDIES** *Part 6: Air Quality Assessment* 

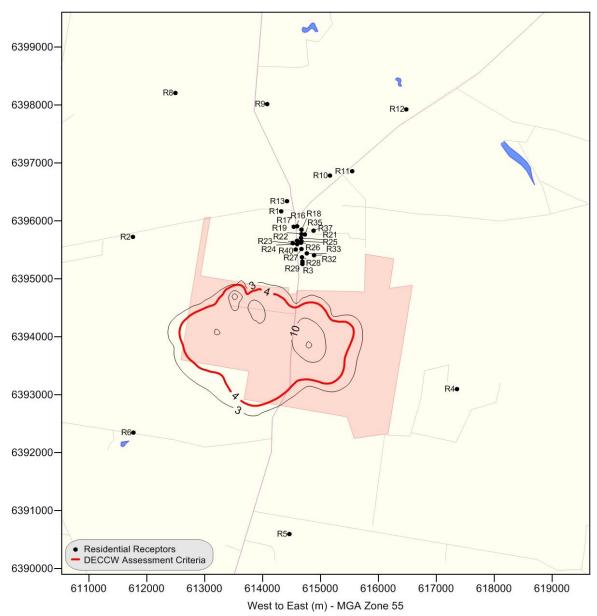



Figure 27: Scenario 3 - Predicted dust deposition levels (g/m<sup>2</sup>/month) due to emissions from the Project and other sources

*Tomingley Gold Project Report No. 616/06* 

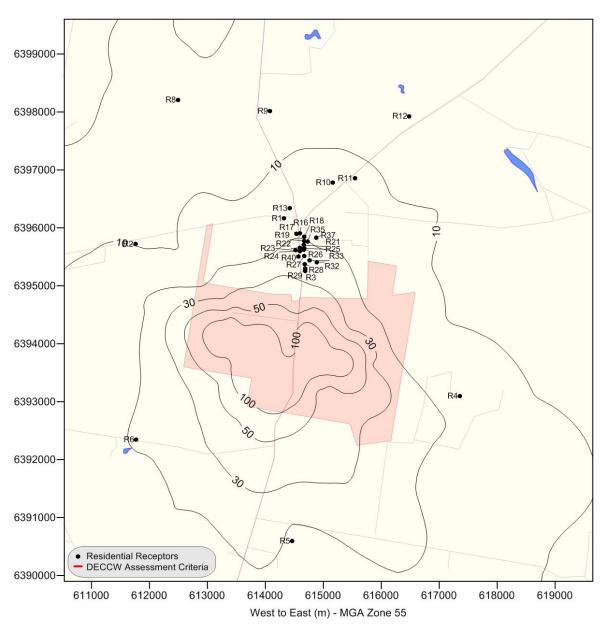



Figure 28: Scenario 4 - Predicted 24-hour average PM<sub>10</sub> concentrations (μg/m<sup>3</sup>) due to emissions from the Project alone

**SPECIALIST CONSULTANT STUDIES** *Part 6: Air Quality Assessment*  ALKANE RESOURCES LTD Tomingley Gold Project Report No. 616/06

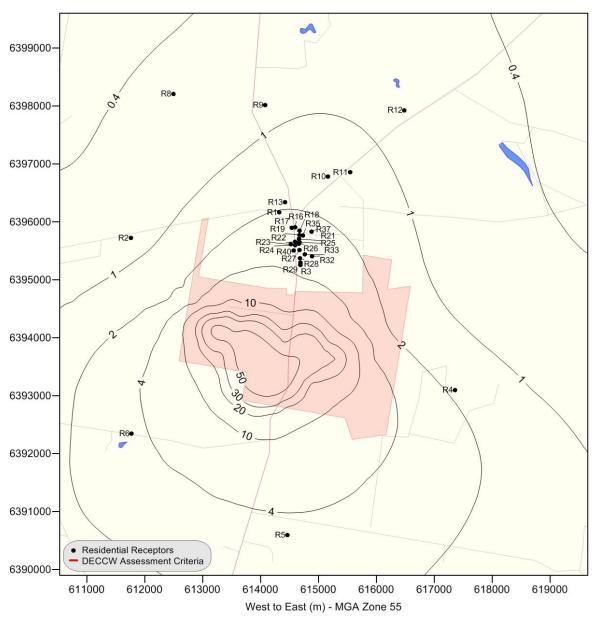



Figure 29: Scenario 4 - Predicted annual average PM<sub>10</sub> concentrations (μg/m<sup>3</sup>) due to emissions from the Project alone

*Tomingley Gold Project Report No. 616/06* 

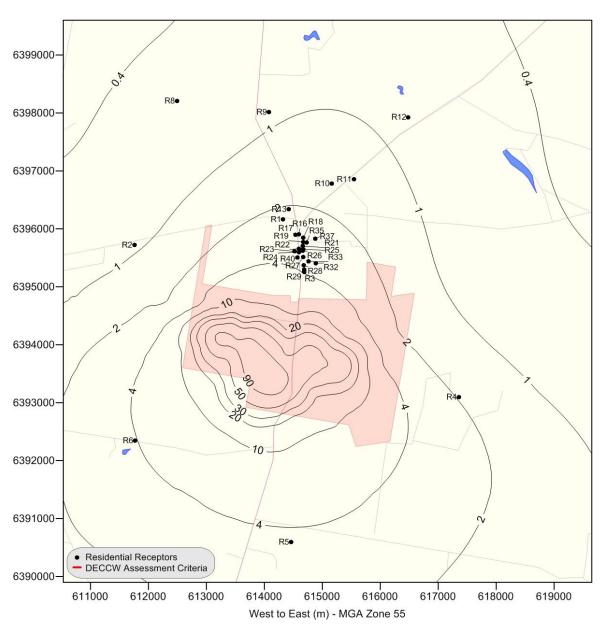



Figure 30: Scenario 4 - Predicted annual average TSP concentrations (µg/m<sup>3</sup>) due to emissions from the Project alone

**SPECIALIST CONSULTANT STUDIES** Part 6: Air Quality Assessment

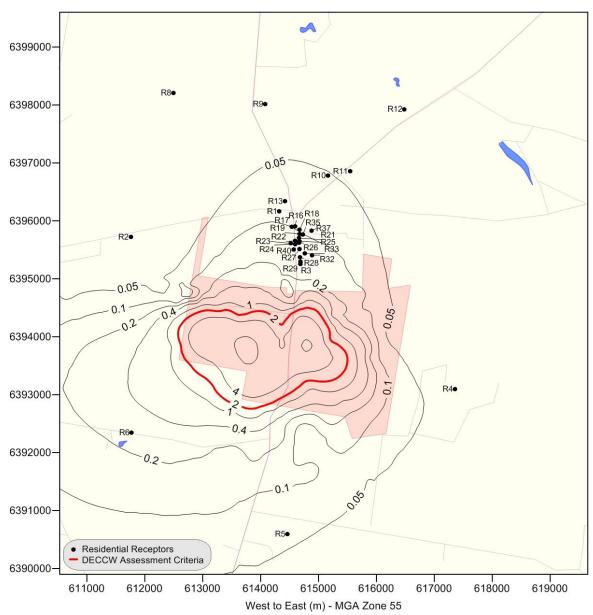



Figure 31: Scenario 4 - Predicted dust deposition concentrations (g/m<sup>2</sup>/month) due to emissions from the Project alone

*Tomingley Gold Project Report No. 616/06* 

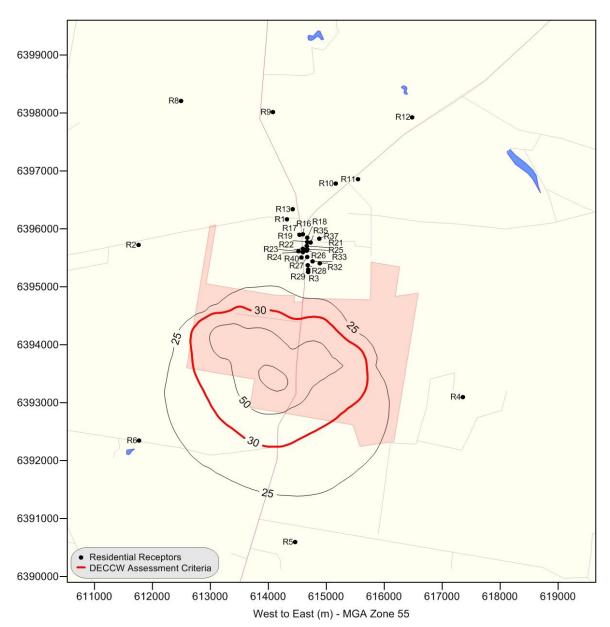
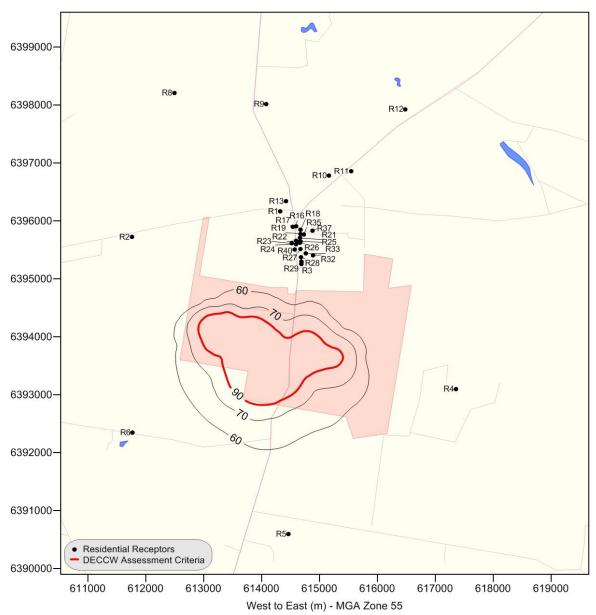




Figure 32: Scenario 4 - Predicted annual average PM<sub>10</sub> concentrations (μg/m<sup>3</sup>) due to emissions from the Project and other sources

**SPECIALIST CONSULTANT STUDIES** *Part 6: Air Quality Assessment* 



## Figure 33: Scenario 4 - Predicted annual average TSP concentrations (μg/m<sup>3</sup>) due to emissions from the Project and other sources

*Tomingley Gold Project Report No. 616/06* 

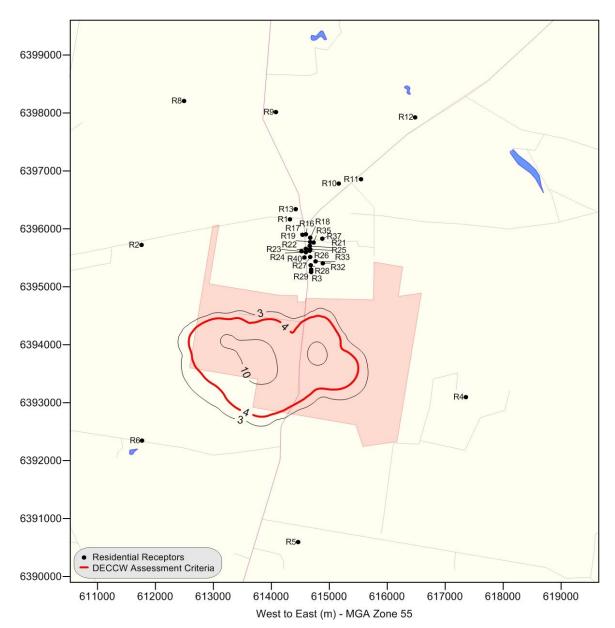



Figure 34: Scenario 4 - Predicted dust deposition levels (g/m<sup>2</sup>/month) due to emissions from the Project and other sources

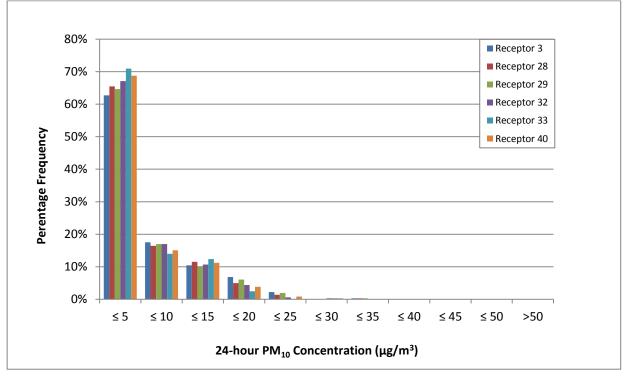



Figure 35: Percentage frequency of incremental 24-hour PM<sub>10</sub> concentrations for sensitive receptors in Scenario 2

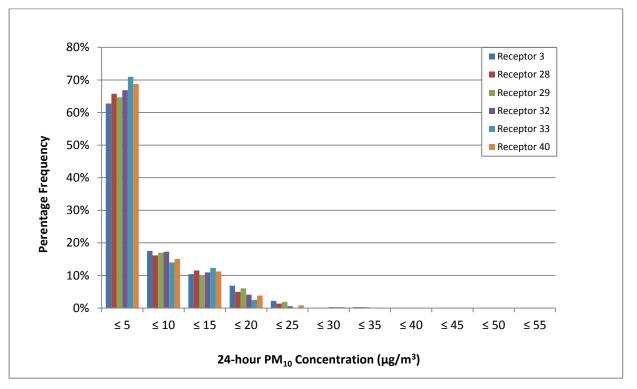



Figure 36: Percentage frequency of incremental 24-hour PM<sub>10</sub> concentrations for sensitive receptors in Scenario 3

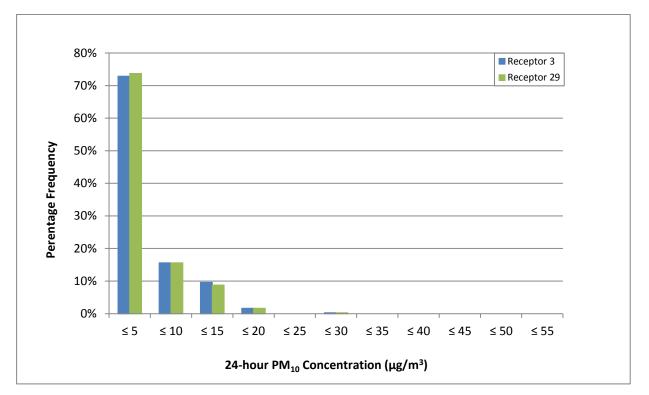



Figure 37: Percentage frequency of 24-hour PM<sub>10</sub> concentrations for sensitive receptors in Scenario 4

# APPENDICES

6 - 81

(No. of pages including blank pages page = 52)

Appendix 1Joint wind speed, wind direction and stability<br/>class frequency tablesAppendix 2TSP and dust deposition monitoring dataAppendix 3Estimated Dust EmissionsAppendix 4Example ISCMOD Input FileAppendix 5Director-General's Requirements

(Note: Appendices 1, 2 and 4 are only provided on the Project CD)

Tomingley Gold Project Report No. 616/06

This page has intentionally been left blank

# **Appendix 1**

6 - 83

## Joint Wind Speed, Wind Direction and Stability Class Frequency Tables

(No. of pages including blank pages = 8)

(A copy of this Appendix is available on the Project CD)

Report No. 616/06

This page has intentionally been left blank

#### **SPECIALIST CONSULTANT STUDIES** *Part 6: Air Quality Assessment*

STATISTICS FOR FILE: C:\Jobs\Tomingley Gold\Met\Tomingley\_TAPM\_met\_2003\TomingleyGold\_1km\_rev.aus MONTHS: All HOURS : All OPTION: Frequency

PASQUILL STABILITY CLASS 'A'

Wind Speed Class (m/s)

| SECTOR | 0.50<br>TO<br>1.50 | TO<br>3.00 | TO<br>4.50 |          | ТО<br>7.50 | 9.00     | TO<br>10.50 | 10.50    |          |
|--------|--------------------|------------|------------|----------|------------|----------|-------------|----------|----------|
|        |                    |            |            |          |            |          |             |          |          |
| NNE    |                    |            |            |          |            |          |             | 0.000000 |          |
| NE     | 0.000228           | 0.003082   | 0.001142   | 0.000000 | 0.000000   | 0.000000 | 0.000000    | 0.000000 | 0.004452 |
| ENE    | 0.000799           | 0.003196   | 0.001484   | 0.000000 | 0.000000   | 0.000000 | 0.000000    | 0.000000 | 0.005479 |
| E      | 0.001142           | 0.003196   | 0.000342   | 0.000000 | 0.000000   | 0.000000 | 0.000000    | 0.000000 | 0.004680 |
| ESE    | 0.000457           | 0.001256   | 0.000457   | 0.000000 | 0.000000   | 0.000000 | 0.000000    | 0.000000 | 0.002169 |
| SE     | 0.000799           | 0.002511   | 0.000342   | 0.000000 | 0.000000   | 0.000000 | 0.000000    | 0.000000 | 0.003653 |
| SSE    | 0.000685           | 0.000913   | 0.000000   | 0.000000 | 0.000000   | 0.000000 | 0.000000    | 0.000000 | 0.001598 |
| S      | 0.000571           | 0.000913   | 0.000228   | 0.000000 | 0.000000   | 0.000000 | 0.000000    | 0.000000 | 0.001712 |
| SSW    | 0.000457           | 0.001484   | 0.000571   | 0.000000 | 0.000000   | 0.000000 | 0.000000    | 0.000000 | 0.002511 |
| SW     | 0.000571           | 0.001941   | 0.000799   | 0.000000 | 0.000000   | 0.000000 | 0.000000    | 0.000000 | 0.003311 |
| WSW    | 0.001484           | 0.001142   | 0.000457   | 0.000000 | 0.000000   | 0.000000 | 0.000000    | 0.000000 | 0.003082 |
| W      | 0.000685           | 0.001256   | 0.000685   | 0.000000 | 0.000000   | 0.000000 | 0.000000    | 0.000000 | 0.002626 |
| WNW    | 0.000571           | 0.001370   | 0.000342   | 0.000000 | 0.000000   | 0.000000 | 0.000000    | 0.000000 | 0.002283 |
| NW     | 0.000685           | 0.001598   | 0.000114   | 0.000000 | 0.000000   | 0.000000 | 0.000000    | 0.000000 | 0.002397 |
| NNW    | 0.000571           | 0.000571   | 0.000228   | 0.000000 | 0.000000   | 0.000000 | 0.000000    | 0.000000 | 0.001370 |
| N      | 0.000457           | 0.001598   | 0.000571   | 0.000000 | 0.000000   | 0.000000 | 0.000000    | 0.000000 | 0.002626 |
| CALM   |                    |            |            |          |            |          |             |          | 0.001370 |
| TOTAL  | 0.010959           | 0.027626   | 0.007991   | 0.000000 | 0.000000   | 0.000000 | 0.000000    | 0.000000 | 0.047945 |

MEAN WIND SPEED (m/s) = 2.19NUMBER OF OBSERVATIONS = 420

#### PASQUILL STABILITY CLASS 'B'

#### Wind Speed Class (m/s)

|        |            |           | na opeca . | 01000 (, . | .,       |          |          |          |          |
|--------|------------|-----------|------------|------------|----------|----------|----------|----------|----------|
|        | 0.50       | 1.50      | 3.00       | 4.50       | 6.00     | 7.50     | 9.00     | GREATER  |          |
| WIND   | TO         | TO        | TO         | TO         | TO       | то       | TO       | THAN     |          |
| SECTOR | 1.50       | 3.00      | 4.50       | 6.00       | 7.50     | 9.00     | 10.50    | 10.50    | TOTAL    |
|        |            |           |            |            |          |          |          |          |          |
|        |            |           |            |            |          |          |          |          |          |
| NNE    | 0.000457   | 0.001598  | 0.003082   | 0.000799   | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.005936 |
| NE     | 0.000228   | 0.002626  | 0.006621   | 0.001826   | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.011301 |
| ENE    | 0.000457   | 0.002283  | 0.007192   | 0.001484   | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.011416 |
| E      | 0.000228   | 0.002055  | 0.005137   | 0.001256   | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.008676 |
| ESE    | 0.000571   | 0.001826  | 0.001256   | 0.000457   | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.004110 |
| SE     | 0.000114   | 0.001256  | 0.001484   | 0.000457   | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.003311 |
| SSE    | 0.000457   | 0.002055  | 0.000799   | 0.000457   | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.003767 |
| S      | 0.000685   | 0.002169  | 0.002055   | 0.000571   | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.005479 |
| SSW    | 0.000685   | 0.002740  | 0.006621   | 0.001256   | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.011301 |
| SW     | 0.001142   | 0.003995  | 0.005137   | 0.002169   | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.012443 |
| WSW    | 0.000457   | 0.001027  | 0.002968   | 0.000913   | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.005365 |
| W      | 0.000342   | 0.001027  | 0.002968   | 0.000913   | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.005251 |
| WNW    | 0.000457   | 0.001370  | 0.002968   | 0.000571   | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.005365 |
| NW     | 0.000114   | 0.001598  | 0.002397   | 0.001370   | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.005479 |
| NNW    | 0.000457   | 0.001484  | 0.002169   | 0.001826   | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.005936 |
| N      | 0.000457   | 0.001712  | 0.002511   | 0.000913   | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.005594 |
|        |            |           |            |            |          |          |          |          |          |
| CALM   |            |           |            |            |          |          |          |          | 0.001256 |
|        |            |           |            |            |          |          |          |          |          |
| TOTAL  | 0.007306   | 0.030822  | 0.055365   | 0.017237   | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.111986 |
|        |            |           |            |            |          |          |          |          |          |
| MEAN   | WIND SPEED | D (m/s) = | 3.40       |            |          |          |          |          |          |

NUMBER OF OBSERVATIONS = 981

Report No. 616/06

PASQUILL STABILITY CLASS 'C'

| Wind | Speed | Class | (m/s) |
|------|-------|-------|-------|
|      |       |       |       |

|        | 0.50     | 1.50     | 3.00     | 4.50     | 6.00     | 7.50     | 9.00     | GREATER  |          |
|--------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| WIND   | TO       | THAN     |          |
| SECTOR | 1.50     | 3.00     | 4.50     | 6.00     | 7.50     | 9.00     | 10.50    | 10.50    | TOTAL    |
|        |          |          |          |          |          |          |          |          |          |
|        |          |          |          |          |          |          |          |          |          |
| NNE    | 0.000114 | 0.000913 | 0.001027 | 0.002968 | 0.001256 | 0.000228 | 0.000000 | 0.000000 | 0.006507 |
| NE     | 0.000571 | 0.001027 | 0.003196 | 0.007877 | 0.001370 | 0.000114 | 0.000000 | 0.000000 | 0.014155 |
| ENE    | 0.000571 | 0.001598 | 0.005023 | 0.014612 | 0.004452 | 0.000114 | 0.000000 | 0.000000 | 0.026370 |
| E      | 0.000457 | 0.000571 | 0.003196 | 0.007306 | 0.003881 | 0.000799 | 0.000000 | 0.000000 | 0.016210 |
| ESE    | 0.000799 | 0.001712 | 0.000571 | 0.001370 | 0.000685 | 0.000000 | 0.000000 | 0.000000 | 0.005137 |
| SE     | 0.000342 | 0.000913 | 0.001484 | 0.001142 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.003881 |
| SSE    | 0.000457 | 0.001142 | 0.001027 | 0.001142 | 0.000228 | 0.000000 | 0.000000 | 0.000000 | 0.003995 |
| S      | 0.000571 | 0.001027 | 0.001256 | 0.001256 | 0.000457 | 0.000000 | 0.000000 | 0.000000 | 0.004566 |
| SSW    | 0.001027 | 0.001484 | 0.001941 | 0.003767 | 0.001941 | 0.000114 | 0.000000 | 0.000000 | 0.010274 |
| SW     | 0.000571 | 0.001826 | 0.002283 | 0.007991 | 0.004566 | 0.000342 | 0.000000 | 0.000000 | 0.017580 |
| WSW    | 0.000913 | 0.000799 | 0.001027 | 0.004452 | 0.005822 | 0.001027 | 0.000000 | 0.000000 | 0.014041 |
| W      | 0.000342 | 0.000685 | 0.001142 | 0.005023 | 0.003881 | 0.001712 | 0.000000 | 0.000000 | 0.012785 |
| WNW    | 0.000228 | 0.000685 | 0.001142 | 0.002169 | 0.002511 | 0.000799 | 0.000000 | 0.000000 | 0.007534 |
| NW     | 0.000571 | 0.000457 | 0.001484 | 0.002626 | 0.001484 | 0.000799 | 0.000000 | 0.000000 | 0.007420 |
| NNW    | 0.000228 | 0.000685 | 0.001484 | 0.003311 | 0.002283 | 0.000571 | 0.000000 | 0.000000 | 0.008562 |
| N      | 0.000342 | 0.000913 | 0.002397 | 0.002055 | 0.001941 | 0.000571 | 0.000000 | 0.000000 | 0.008219 |
|        |          |          |          |          |          |          |          |          |          |
| CALM   |          |          |          |          |          |          |          |          | 0.001484 |
|        |          |          |          |          |          |          |          |          |          |
|        |          |          |          |          |          |          |          |          |          |

TOTAL 0.008105 0.016438 0.029680 0.069064 0.036758 0.007192 0.000000 0.000000 0.168721

MEAN WIND SPEED (m/s) = 4.96 NUMBER OF OBSERVATIONS = 1478

PASQUILL STABILITY CLASS 'D'

Wind Speed Class (m/s)

| WIND<br>SECTOR | 0.50<br>TO<br>1.50 | ТО        | ТО       |          | ТО       | ТО       | ТО       | THAN     | TOTAL    |
|----------------|--------------------|-----------|----------|----------|----------|----------|----------|----------|----------|
|                |                    |           |          |          |          |          |          |          |          |
| NNE            |                    |           |          |          |          |          |          | 0.000000 |          |
| NE             |                    |           |          |          |          |          |          | 0.000000 |          |
| ENE            |                    |           |          |          |          |          |          | 0.000000 |          |
| E              |                    |           |          |          |          |          |          | 0.000000 |          |
| ESE            |                    |           |          |          |          |          |          | 0.000000 |          |
| SE             | 0.007534           | 0.003311  | 0.000685 | 0.000114 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.011644 |
| SSE            | 0.010502           | 0.005251  | 0.000685 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.016438 |
| S              | 0.008447           | 0.005594  | 0.000342 | 0.000342 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.014726 |
| SSW            | 0.006393           | 0.006050  | 0.002169 | 0.001142 | 0.001941 | 0.000000 | 0.000000 | 0.000000 | 0.017694 |
| SW             | 0.004224           | 0.004110  | 0.005137 | 0.002626 | 0.002283 | 0.001484 | 0.000571 | 0.000000 | 0.020434 |
| WSW            | 0.004909           | 0.002854  | 0.001826 | 0.003425 | 0.002397 | 0.002626 | 0.001027 | 0.000000 | 0.019064 |
| W              | 0.002626           | 0.001712  | 0.001256 | 0.003311 | 0.002854 | 0.001256 | 0.001484 | 0.000228 | 0.014726 |
| WNW            | 0.001941           | 0.002626  | 0.000685 | 0.002740 | 0.002169 | 0.001027 | 0.000685 | 0.000342 | 0.012215 |
| NW             | 0.001712           | 0.001941  | 0.002169 | 0.000913 | 0.001256 | 0.001256 | 0.001142 | 0.000114 | 0.010502 |
| NNW            | 0.002397           | 0.003995  | 0.000913 | 0.001941 | 0.001941 | 0.001027 | 0.000000 | 0.000342 | 0.012557 |
| N              | 0.002511           | 0.003539  | 0.000685 | 0.002968 | 0.002169 | 0.001598 | 0.000685 | 0.000228 | 0.014384 |
| CALM           |                    |           |          |          |          |          |          |          | 0.005365 |
| TOTAL          | 0.067808           | 0.073174  | 0.034932 | 0.085959 | 0.048516 | 0.016781 | 0.005708 | 0.001256 | 0.339498 |
| MEAN           | WIND SPEEI         | ) (m/s) = | 4.02     |          |          |          |          |          |          |

MEAN WIND SPEED (m/s) = 4.02 NUMBER OF OBSERVATIONS = 2974

#### PASQUILL STABILITY CLASS 'E'

|        |          | Wir      | nd Speed ( | Class (m/s | 5)       |          |          |          |          |
|--------|----------|----------|------------|------------|----------|----------|----------|----------|----------|
|        | 0.50     | 1.50     | 3.00       | 4.50       | 6.00     | 7.50     | 9.00     | GREATER  |          |
| WIND   | TO       | TO       | TO         | TO         | TO       | то       | TO       | THAN     |          |
| SECTOR | 1.50     | 3.00     | 4.50       | 6.00       | 7.50     | 9.00     | 10.50    | 10.50    | TOTAL    |
|        |          |          |            |            |          |          |          |          |          |
| NNE    | 0.000685 | 0.001712 | 0.002854   | 0.002283   | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.007534 |
| NE     | 0.000571 | 0.000913 | 0.003995   | 0.000799   | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.006279 |
| ENE    | 0.001712 | 0.001598 | 0.014612   | 0.010731   | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.028653 |
| E      | 0.000913 | 0.003653 | 0.013813   | 0.009475   | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.027854 |
| ESE    | 0.000457 | 0.003196 | 0.000913   | 0.000114   | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.004680 |
| SE     | 0.000799 | 0.002055 | 0.000000   | 0.000000   | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.002854 |
| SSE    | 0.002055 | 0.001826 | 0.000000   | 0.000000   | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.003881 |
| S      | 0.001598 | 0.001598 | 0.000342   | 0.000000   | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.003539 |
| SSW    | 0.001712 | 0.001370 | 0.000685   | 0.000571   | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.004338 |
| SW     | 0.001598 | 0.000685 | 0.001142   | 0.000342   | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.003767 |
| WSW    | 0.000799 | 0.001027 | 0.001941   | 0.000342   | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.004110 |
| W      | 0.000457 | 0.000799 | 0.000685   | 0.000228   | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.002169 |
| WNW    | 0.000571 | 0.000571 | 0.000685   | 0.000457   | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.002283 |
| NW     | 0.000457 | 0.000571 | 0.000799   | 0.000571   | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.002397 |
| NNW    | 0.000228 | 0.000799 | 0.000457   | 0.000913   | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.002397 |
| N      | 0.000457 | 0.001941 | 0.001256   | 0.000457   | 0.000000 | 0.00000  | 0.000000 | 0.000000 | 0.004110 |
| CALM   |          |          |            |            |          |          |          |          | 0.000000 |
| TOTAL  | 0.015068 | 0.024315 | 0.044178   | 0.027283   | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.110845 |

MEAN WIND SPEED (m/s) = 3.40NUMBER OF OBSERVATIONS = 971

PASQUILL STABILITY CLASS 'F'

Wind Speed Class (m/s)

| WIND<br>SECTOR | TO<br>1.50              | 1.50<br>TO<br>3.00 | TO<br>4.50 | TO<br>6.00 | ТО<br>7.50 | TO<br>9.00 | TO<br>10.50 | THAN 10.50 |          |
|----------------|-------------------------|--------------------|------------|------------|------------|------------|-------------|------------|----------|
| NNE<br>NE      |                         | 0.014384           |            |            |            |            |             |            |          |
| ENE            | 0.000228                | 0.019064           | 0.004566   | 0.000000   | 0.000000   | 0.000000   | 0.000000    | 0.000000   | 0.023858 |
| E              | 0.000799                | 0.023402           | 0.007534   | 0.000000   | 0.000000   | 0.000000   | 0.000000    | 0.000000   | 0.031735 |
| ESE            | 0.000571                | 0.012900           | 0.001484   | 0.000000   | 0.000000   | 0.000000   | 0.000000    | 0.000000   | 0.014954 |
| SE             | 0.001027                | 0.007192           | 0.000114   | 0.000000   | 0.000000   | 0.000000   | 0.000000    | 0.000000   | 0.008333 |
| SSE            | 0.001712                | 0.009018           | 0.000114   | 0.000000   | 0.000000   | 0.000000   | 0.000000    | 0.000000   | 0.010845 |
| S              | 0.002397                | 0.019178           | 0.000114   | 0.000000   | 0.000000   | 0.000000   | 0.000000    | 0.000000   | 0.021689 |
| SSW            | 0.003196                | 0.013242           | 0.000342   | 0.000000   | 0.000000   | 0.000000   | 0.000000    | 0.000000   | 0.016781 |
| SW             | 0.001142                | 0.012900           | 0.001142   | 0.000000   | 0.000000   | 0.000000   | 0.000000    | 0.000000   | 0.015183 |
| WSW            | 0.000799                | 0.007991           | 0.000913   | 0.000000   | 0.000000   | 0.000000   | 0.000000    | 0.000000   | 0.009703 |
| W              | 0.000685                | 0.005251           | 0.000342   | 0.000000   | 0.000000   | 0.000000   | 0.000000    | 0.000000   | 0.006279 |
| WNW            | 0.000457                | 0.006735           | 0.000457   | 0.000000   | 0.000000   | 0.000000   | 0.000000    | 0.000000   | 0.007648 |
| NW             | 0.000913                | 0.003653           | 0.000228   | 0.000000   | 0.000000   | 0.000000   | 0.000000    | 0.000000   | 0.004795 |
| NNW            | 0.000571                | 0.005479           | 0.000114   | 0.000000   | 0.000000   | 0.000000   | 0.000000    | 0.000000   | 0.006164 |
| N              | 0.000799                | 0.007648           | 0.000457   | 0.000000   | 0.000000   | 0.000000   | 0.000000    | 0.000000   | 0.008904 |
| CALM           |                         |                    |            |            |            |            |             |            | 0.000000 |
| TOTAL          | 0.017009                | 0.183219           | 0.020776   | 0.000000   | 0.000000   | 0.000000   | 0.000000    | 0.000000   | 0.221005 |
|                | WIND SPEEN<br>OF OBSERV | ( ) = )            |            |            |            |            |             |            |          |

Report No. 616/06

#### ALL PASQUILL STABILITY CLASSES

|        |                         | Wir      | nd Speed ( | Class (m/s | 5)       |          |          |          |          |
|--------|-------------------------|----------|------------|------------|----------|----------|----------|----------|----------|
|        | 0.50                    | 1.50     | 3.00       | 4.50       | 6.00     | 7.50     | 9.00     | GREATER  |          |
| WIND   | TO                      | TO       | то         | то         | то       | то       | то       | THAN     |          |
| SECTOR | 1.50                    | 3.00     | 4.50       | 6.00       | 7.50     | 9.00     | 10.50    | 10.50    | TOTAL    |
|        |                         |          |            |            |          |          |          |          |          |
|        |                         |          |            |            |          |          |          |          |          |
| NNE    |                         | 0.026256 |            |            |          |          |          |          |          |
| NE     |                         | 0.029338 |            |            |          |          |          |          |          |
| ENE    |                         | 0.034247 |            |            |          |          |          |          |          |
| E      |                         | 0.041210 |            |            |          |          |          |          |          |
| ESE    | 0.006963                | 0.025685 | 0.005822   | 0.003767   | 0.000799 | 0.000000 | 0.000000 | 0.000000 | 0.043037 |
| SE     | 0.010616                | 0.017237 | 0.004110   | 0.001712   | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.033676 |
| SSE    | 0.015868                | 0.020205 | 0.002626   | 0.001598   | 0.000228 | 0.000000 | 0.000000 | 0.000000 | 0.040525 |
| S      | 0.014269                | 0.030479 | 0.004338   | 0.002169   | 0.000457 | 0.000000 | 0.000000 | 0.000000 | 0.051712 |
| SSW    | 0.013470                | 0.026370 | 0.012329   | 0.006735   | 0.003881 | 0.000114 | 0.000000 | 0.000000 | 0.062900 |
| SW     | 0.009247                | 0.025457 | 0.015639   | 0.013128   | 0.006849 | 0.001826 | 0.000571 | 0.000000 | 0.072717 |
| WSW    | 0.009361                | 0.014840 | 0.009132   | 0.009132   | 0.008219 | 0.003653 | 0.001027 | 0.000000 | 0.055365 |
| W      | 0.005137                | 0.010731 | 0.007078   | 0.009475   | 0.006735 | 0.002968 | 0.001484 | 0.000228 | 0.043836 |
| WNW    | 0.004224                | 0.013356 | 0.006279   | 0.005936   | 0.004680 | 0.001826 | 0.000685 | 0.000342 | 0.037329 |
| NW     | 0.004452                | 0.009817 | 0.007192   | 0.005479   | 0.002740 | 0.002055 | 0.001142 | 0.000114 | 0.032991 |
| NNW    | 0.004452                | 0.013014 | 0.005365   | 0.007991   | 0.004224 | 0.001598 | 0.000000 | 0.000342 | 0.036986 |
| N      |                         | 0.017352 |            |            |          |          |          |          |          |
|        |                         |          |            |            |          |          |          |          |          |
| CALM   |                         |          |            |            |          |          |          |          | 0.009475 |
| TOTAL  | 0.126256                | 0.355594 | 0.192922   | 0.199543   | 0.085274 | 0.023973 | 0.005708 | 0.001256 | 1.000000 |
|        | WIND SPEEN<br>OF OBSERV | ( , _ )  |            |            |          |          |          |          |          |

| FREQU            | JENCY                                | OF O                 | CCUREI       | NCE O | F STAI | BILITY | CLASSES |
|------------------|--------------------------------------|----------------------|--------------|-------|--------|--------|---------|
| B<br>C<br>D<br>E | 4.8°<br>11.2<br>16.9<br>33.9<br>11.2 | 2%<br>9%<br>9%<br>1% |              |       |        |        |         |
| STAB             | ILITY                                | CLAS                 | S BY H       | HOUR  | OF DA  | -<br>Y |         |
| Hour             | <br>A                                | в                    | c            | D     | <br>Е  | -<br>F |         |
| 01               | 0000                                 | 0000                 | 0000         | 0120  | 0082   | 0163   |         |
| 02               | 0000                                 | 0000                 | 0000         | 0127  | 0083   | 0155   |         |
| 03               | 0000                                 | 0000                 | 0000         | 0136  | 0078   | 0151   |         |
| 04               | 0000                                 | 0000                 | 0000         | 0132  | 0090   | 0143   |         |
| 05               | 0000                                 | 0000                 | 0000         | 0133  | 0103   | 0129   |         |
|                  |                                      |                      |              |       |        |        |         |
| 06               | 0000                                 | 0000                 | 0000         | 0233  | 0058   | 0074   |         |
| 06<br>07         |                                      |                      | 0000<br>0013 |       |        |        |         |

\_\_\_\_\_

| STABIL     | ITY CL | ASS BY  | MIXIN  | G HEIG | GHT   |       |     |         |
|------------|--------|---------|--------|--------|-------|-------|-----|---------|
| <br>Mixing | heigh  |         | в      | с с    | <br>D | E     | F   |         |
| <=         | 500 m  | 001     | 1 0230 | 0419   | 2278  | 0962  | 193 |         |
| <=1        | 000 m  | 0053    | 3 0186 | 0206   | 0284  | 0009  | 000 | 4       |
| <=1        | 500 m  | 0173    | 3 0283 | 0495   | 0234  | 0000  | 000 | 0       |
| <=2        | 000 m  | 0112    | 2 0147 | 0207   | 0116  | 0000  | 000 | 0       |
| <=3        | 000 m  | 0073    | 1 0135 | 0149   | 0059  | 0000  | 000 | 0       |
| >3         | 000 m  | 0000    | 0000   | 0002   | 0003  | 0000  | 000 | 0       |
|            |        |         |        |        |       |       |     |         |
| MIXING     | HEIGH  | T BY HO | JUR OF | DAY    |       |       |     |         |
|            | 0000   | 0100    | 0200   | 0400   | 0800  | 160   | 00  | Greater |
|            | to     | to      | to     | to     | to    | to    | 0   | than    |
| Hour       | 0100   | 0200    | 0400   | 0800   | 1600  | 320   | 00  | 3200    |
| 01         | 0073   | 0182    | 0092   | 0014   | 0004  | 000   | 00  | 0000    |
| 02         | 0068   | 0175    | 0104   | 0016   | 0002  | 2 000 | 00  | 0000    |
| 03         | 0064   | 0170    | 0111   | 0016   | 0004  | £ 000 | 00  | 0000    |
| 04         | 0061   | 0159    | 0123   | 0019   | 0003  | 3 000 | 00  | 0000    |
| 05         | 0068   | 0150    | 0128   | 0016   | 0003  | 8 000 | 00  | 0000    |
| 06         | 0067   | 0141    | 0138   | 0017   | 0002  | 2 000 | 00  | 0000    |
| 07         | 0078   | 0157    | 0110   | 0019   | 0001  | . 000 | 00  | 0000    |
| 08         | 0082   | 0140    | 0113   | 0026   | 0004  | £ 000 | 00  | 0000    |
| 09         | 0066   | 0084    | 0112   | 0091   | 0012  | 2 000 | 00  | 0000    |
| 10         | 0009   | 0065    | 0074   | 0148   | 0068  | 8 000 | 01  | 0000    |
| 11         | 0001   | 0009    | 0059   | 0100   | 0178  | 8 002 | L 8 | 0000    |
| 12         | 0001   | 0004    | 0009   | 0066   | 0223  | 3 006 | 52  | 0000    |
| 13         | 0001   | 0001    | 0007   | 0023   | 0226  | 5 010 | 7   | 0000    |
| 14         | 0001   | 0001    | 0004   | 0013   | 0196  | 5 015 | 50  | 0000    |
| 15         | 0000   | 0002    | 8000   | 0011   | 0183  | 3 016 | 50  | 0001    |
| 16         | 0002   | 0002    | 0006   | 0013   | 0163  | 8 01  | 77  | 0002    |
| 17         | 0001   | 0008    | 0018   | 0054   | 0120  | 010   | 53  | 0001    |
| 18         | 0051   | 0064    | 0037   | 0035   | 0100  | 00    | 78  | 0000    |
| 19         | 0079   | 0160    | 0051   | 0035   | 0031  | . 000 | 9   | 0000    |
| 20         | 0107   | 0199    | 0036   | 0015   | 0007  | 000   | 01  | 0000    |
| 21         | 0099   | 0209    | 0043   | 0010   | 0003  | 8 000 | 01  | 0000    |
| 22         | 0094   | 0200    | 0057   | 0011   | 0002  | 2 000 | 01  | 0000    |
| 23         | 0089   | 0189    | 0071   | 0014   | 0002  | 2 000 | 00  | 0000    |
| 24         | 0083   | 0187    | 0081   | 0008   | 0006  | 5 000 | 00  | 0000    |

Tomingley Gold Project Report No. 616/06

This page has intentionally been left blank

# **Appendix 2**

6 - 91

## **TSP** and **Dust Deposition Monitoring Data**

(No. of pages including blank pages = 10)

(A copy of this Appendix is available on the Project CD)

Report No. 616/06

This page has intentionally been left blank

| Table 1                                                   |
|-----------------------------------------------------------|
| Dust Deposition Monitoring Data (g/m <sup>2</sup> /month) |

| Veen | Mandh     |          |           |             |              |                   | Deposition Gau | ge ID       |             |              |                    |           |
|------|-----------|----------|-----------|-------------|--------------|-------------------|----------------|-------------|-------------|--------------|--------------------|-----------|
| Year | Month     | 'Dunoon' | 'Wyoming' | 'Tomingley' | 41 Euchie St | 'Little Oakleigh' | 59 Euchie St   | 'Cowabunga' | Warrigal Rd | 2 Caswell St | Frazer court Hotel | 'Towalba' |
|      | January   | -        | -         | -           | 1.4          | 1.1               | 1.4            | -           | 1.5         | 1.1          | -                  | -         |
|      | February  | -        | -         | -           | 9.3          | 7                 | 10.2           | -           | 7.9         | 7.8          | -                  | -         |
|      | March     | -        | -         | -           | 2.1          | *8.4              | 3.5            | -           | 2.8         | 2.6          | -                  | -         |
|      | April     | -        | -         | -           | 3.7          | *5.5              | 3.7            | -           | 3.2         | 3.4          | -                  | -         |
|      | May       | -        | -         | -           | 0.5          | 0.9               | 0.8            | -           | 0.7         | 0.6          | -                  | -         |
|      | June      | -        | -         | -           | 1.4          | 0.5               | 2.4            | -           | 1.1         | 1.7          | -                  | -         |
| 1996 | July      | -        | -         | -           | 1.3          | 1.1               | 1.7            | -           | 1.3         | 1            | -                  | -         |
|      | August    | -        | -         | -           | 1.4          | 1.8               | 1.9            | -           | 2.5         | 1.7          | -                  | -         |
|      | September | -        | -         | -           | 2.8          | *4.5              | 3.2            | -           | 2.8         | 2.7          | -                  | -         |
|      | October   | -        | -         | -           | 0.7          | 0.7               | 0.8            | -           | 1.1         | 1.2          | -                  | -         |
|      | November  | -        | -         | -           | 2.8          | 4.3               | 6.3            | -           | 7.2         | 8.3          | -                  | 4.7       |
|      | December  | -        | -         | -           | 1.6          | 1.1               | *155.0         | -           | 2.8         | *18.4        | -                  | 2.1       |
|      | Average   | -        | -         | -           | 2.4          | 2.1               | 3.3            | -           | 2.9         | 2.9          | -                  | 3.4       |
|      | January   | -        | -         | -           | 0.5          | 1.7               | 0.6            | -           | 1.0         | 0.6          | 1.0                | -         |
|      | February  | -        | -         | -           | 1.7          | 0.6               | 2.0            | -           | 1.7         | 1.4          | 1.8                | -         |
|      | March     | -        | -         | -           | 1.0          | 0.7               | 1.1            | -           | 1.3         | 0.9          | 0.9                | -         |
|      | April     | -        | -         | -           | 1.9          | 1.3               | 1.5            | -           | 2.1         | 1.6          | 2.0                | -         |
|      | May       | -        | -         | -           | 0.4          | 0.6               | 0.6            | -           | 1.4         | 0.6          | 1.0                | -         |
|      | June      | -        | -         | -           | 1.2          | 1.5               | 0.8            | -           | 1.0         | 1.2          | 0.5                | -         |
| 2001 | July      | -        | -         | -           | 0.3          | 0.5               | 0.6            | -           | 1.4         | 0.6          | 1.3                | -         |
|      | August    | -        | -         | -           | 1.4          | 1.5               | 1.5            | -           | 2.0         | 1.7          | 2.1                | -         |
|      | September | -        | -         | -           | 1.4          | 1.0               | 1.2            | -           | 1.9         | 1.0          | 1.3                | -         |
|      | October   | -        | -         | -           | 0.7          | 0.3               | 0.3            | -           | 1.0         | 0.7          | 0.9                | -         |
|      | November  | -        | -         | -           | 0.7          | 1.2               | 1.0            | -           | 1.5         | 0.9          | 1.6                | -         |
|      | December  | -        | -         | -           | *3.2         | -                 | -              | 2.0         | 2.6         | 3.2          | 3.5                | -         |
|      | Average   | -        | -         | -           | 1.0          | 1.0               | 1.0            | 2.0         | 1.6         | 1.2          | 1.5                | -         |
|      | January   | 2.6      | 9.2       | 2.0         | -            | -                 | 3.7            | 1.6         | 2.6         | 2.7          | 2.4                | -         |
|      | February  | 2.1      | 2.7       | 1.0         | 2.0          | -                 | 2.1            | 1.2         | 2.0         | 1.3          | 2.1                | -         |
|      | March     | 1.5      | 3.9       | 1.4         | 2.1          | -                 | 2.0            | 0.9         | 1.8         | 1.5          | 2.2                | -         |
|      | April     | 0.7      | 2         | 1.9         | 0.7          | -                 | 1.0            | 0.3         | 0.8         | 1.1          | 1.0                | -         |
|      | May       | 0.7      | 1.3       | 0.9         | 1.4          | -                 | 1.6            | 0.5         | 1.7         | 1.1          | 1.3                | -         |
|      | June      | 0.5      | 4.3       | 0.6         | 1.8          | -                 | 0.9            | 0.7         | 1.7         | 0.7          | 1.1                | -         |
| 2002 | July      | 0.3      | 1.2       | 0.4         | 0.8          | -                 | 0.8            | 0.4         | 1.0         | 0.6          | 0.5                | -         |
|      | August    | 1.5      | 2         | 1.6         | 3.0          | -                 | 1.1            | 1.0         | 1.7         | 1.5          | 1.5                | -         |
|      | September | 1.9      | 6.2       | 2.7         | 2.5          | -                 | 3.8            | 2.5         | 3.0         | 3.0          | 3.4                | -         |
|      | October   | 2.5      | 2.3       | 1.3         | 1.0          | -                 | 1.7            | 0.3         | 0.9         | 1.3          | 0.9                | -         |
|      | November  | 4        | 7.3       | 2.5         | -            | -                 | -              | -           | -           | -            | -                  | -         |
|      | December  | 5.5      | 7.8       | 5.3         | -            | -                 | -              | -           | -           | -            | -                  | -         |
|      | Average   | 2.0      | 4.2       | 1.8         | 1.7          | -                 | 1.9            | 0.9         | 1.7         | 1.5          | 1.6                | -         |
|      | January   | 1.5      | 1.2       | 1.8         | -            | -                 | -              | -           | -           | -            | -                  | -         |
|      | February  | 12.2     | 11.3      | 25.8        | -            | -                 | -              | -           | -           | -            | -                  | -         |
| 0000 | March     | 1.5      | 4.2       | 2           | -            | -                 | -              | -           | -           | -            | -                  | -         |
| 2003 | April     | 0.7      | 1.9       | 0.8         | -            | -                 | -              | -           | -           | -            | -                  | -         |
|      | May       | 0.7      | 2.8       | 0.8         | -            | -                 | -              | -           | -           | -            | -                  | -         |
|      | June      | 0.9      | 3.7       | 0.4         | -            | -                 | -              | -           | -           | -            | -                  | -         |
|      | July      | 0.3      | 0.5       | 1.6         | -            | -                 | -              | -           | -           | -            | -                  | -         |

Tomingley Gold Project Report No. 616/06

|      |                    |                   |            |             |               |                   | Dama alti an Oan               |                      |             |              |                    |           |
|------|--------------------|-------------------|------------|-------------|---------------|-------------------|--------------------------------|----------------------|-------------|--------------|--------------------|-----------|
| Year | Month              | 'Dunoon'          | 'Wyoming'  | 'Tomingley' | 41 Euchie St  | 'Little Oakleigh' | Deposition Gau<br>59 Euchie St | ge ID<br>'Cowabunga' | Warrigal Rd | 2 Caswell St | Frazer court Hotel | 'Towalba' |
|      | August             | 0.3               | 1.3        | 0.3         | 41 Eucrile St | Little Oakleigh   |                                |                      | -           | 2 Caswell St | -                  | TOWAIDA   |
|      | September          | 1.1               | 2.3        | 0.9         | -             | -                 | -                              | -                    | -           | -            | -                  | -         |
|      | October            | 1.1               | 1.4        | 1.2         | -             | -                 | -                              | -                    | -           | -            | -                  | -         |
|      | November           | 2.1               | 5.1        | 1.8         | -             | -                 | -                              | -                    | -           | -            | -                  | _         |
|      | December           | 1.9               | 4.7        | 1.7         | -             | -                 | -                              | -                    | -           | -            | -                  | -         |
|      | Average            | 2.1               | 3.4        | 3.3         | -             | -                 | -                              | -                    | -           | -            | -                  | -         |
|      | January            | 1.3               | 2.6        | 1.4         | -             | -                 | -                              | -                    | -           | -            | -                  | -         |
|      | February           | 3.4               | 5.7        | 4.1         | -             | -                 | -                              | -                    | -           | -            | -                  | -         |
|      | March              | 1.2               | 1.8        | 3.8         | -             | -                 | -                              | -                    | -           | -            | -                  | -         |
|      | April              | 2.9               | 4          | 1.5         | -             | -                 | -                              | -                    | -           | -            | -                  | -         |
|      | May                | 0.9               | 2.1        | 0.9         | -             | -                 | -                              | -                    | -           | -            | -                  | -         |
|      | June               | 0.5               | 2          | 1.5         | -             | -                 | -                              | -                    | -           | -            | -                  | -         |
| 2004 | July               | 0.8               | 0.7        | 1.4         | -             | -                 | -                              | -                    | -           | -            | -                  | -         |
|      | August             | 1.4               | 2.5        | 1.6         | -             | -                 | -                              | -                    | -           | -            | -                  | -         |
|      | September          | 0.4               | 0.9        | 0.5         | -             | -                 | -                              | -                    | -           | -            | -                  | -         |
|      | October            | 1.2               | 1.1        | 1           | -             | -                 | -                              | -                    | -           | -            | -                  | -         |
|      | November           | 2                 | 2.1        | 0.9         | -             | -                 | -                              | -                    | -           | -            | -                  | -         |
|      | December           | 2.8               | 5.6        | 2.4         | -             | -                 | -                              | -                    | -           | -            | -                  | -         |
|      | Average            | 1.6               | 2.6        | 1.8         | -             | -                 | -                              | -                    | -           | -            | -                  | -         |
|      | January            | 2.8               | *30.1      | 4           | -             | -                 | -                              | -                    | -           | -            | -                  | -         |
|      | February           | 2.9               | 2.6        | 2.7         | -             | -                 |                                |                      | -           | -            | -                  | -         |
|      | March              | 0.9               | 1.8        | 1.3         | -             | -                 | -                              | -                    | -           | -            | -                  | -         |
|      | April              | 0.6               | 0.8        | 1.2         | -             | -                 | -                              | -                    | -           | -            | -                  | -         |
|      | May                | 1.6               | 1.7        | 0.6         | -             | -                 | -                              | -                    | -           | -            | -                  | -         |
|      | June               | 1.2               | 1.6        | 1.3         | -             | -                 | -                              | -                    | -           | -            | -                  | -         |
| 2005 | July               | 0.3               | 0.2        | 0.3         | -             | -                 | -                              | -                    | -           | -            | -                  | -         |
|      | August             | 0.4               | 0.8        | 0.8         | -             | -                 | -                              | -                    | -           | -            | -                  | -         |
|      | September          | 0.3               | 0.6        | 0.6         | -             | -                 | -                              | -                    | -           | -            | -                  | -         |
|      | October            | 1.1               | 1<br>1.2   | 1<br>0.7    | -             |                   |                                |                      | -           | -            | -                  |           |
|      | November           | 0.7               | 1.2<br>8.6 | -           | -             | -                 | -                              | -                    | -           | -            | -                  | -         |
|      | December           | 1.1<br><b>1.2</b> | 8.6<br>1.9 | 1<br>1.3    | -             | -                 | -                              | -                    | -           | -            | -                  | -         |
|      | Average<br>January | 0.4               | 0.9        | 1.5         | -             | -                 | -                              | -                    | -           | -            | -                  | -         |
|      | February           | 0.4               | 1.6        | 4           | -             | -                 | -                              | -                    | -           | -            | -                  | -         |
|      | March              | 0.8               | 1.0        | 1.2         | -             | -                 | -                              |                      |             | -            | -                  | -         |
|      | April              | 0.8               | 1.1        | 0.5         | -             | -                 | -                              | -                    | -           | -            | -                  | -         |
|      | May                | 0.8               | 2.9        | 0.7         | -             |                   |                                | -                    | -           |              | -                  | -         |
|      | June               | -                 | -          | -           | -             |                   | -                              | -                    | -           | -            | -                  | -         |
| 2006 | July               | -                 | -          | -           | -             |                   |                                | -                    | -           |              |                    | -         |
| 2000 | August             | -                 | -          | -           | -             |                   | -                              | -                    | -           | -            | -                  | -         |
|      | September          | -                 | -          | -           | -             | -                 | -                              | -                    | -           | -            | -                  | -         |
|      | October            | -                 | -          | -           | -             | -                 | -                              | -                    | -           | -            | -                  | -         |
|      | November           | -                 | -          | -           | -             | -                 | -                              | -                    | -           | -            | -                  | -         |
|      | December           | -                 | -          | -           | -             | -                 |                                | -                    | -           | -            | -                  | -         |
|      | Average            | 0.9               | 1.7        | 1.6         | -             | -                 | -                              | -                    | -           | -            | -                  | -         |
| 0.1  | tominated by b     |                   |            |             | 1             |                   |                                |                      | 1           |              | 1                  |           |

6 - 94

\* Site contaminated by bird droppings or organic matter

### SPECIALIST CONSULTANT STUDIES

|          | Table 2    |                           |
|----------|------------|---------------------------|
| HVAS TSP | Monitoring | Data (µg/m <sup>3</sup> ) |

|                        | Monitori             | itoring location ID |  |  |  |  |  |
|------------------------|----------------------|---------------------|--|--|--|--|--|
| Date -                 | 59 Euchie St         | Frazer Court        |  |  |  |  |  |
| 16-Feb-96              | 90.2                 |                     |  |  |  |  |  |
| 20-Feb-96              | 232.3                |                     |  |  |  |  |  |
| 27-Feb-96              | 102.3                |                     |  |  |  |  |  |
| 03-Mar-96              | <u>56.2</u><br>97.8  |                     |  |  |  |  |  |
| 09-Mar-96<br>15-Mar-96 | <u>97.8</u><br>177.1 |                     |  |  |  |  |  |
| 21-Mar-96              | 66.5                 |                     |  |  |  |  |  |
| 27-Mar-96              | 90.3                 |                     |  |  |  |  |  |
| 02-Apr-96              | 77.6                 |                     |  |  |  |  |  |
| 08-Apr-96              | 45.1                 |                     |  |  |  |  |  |
| 14-Apr-96              | 84.6                 |                     |  |  |  |  |  |
| 19-Apr-96              | 57.0                 |                     |  |  |  |  |  |
| 25-Apr-96              | 66.3                 |                     |  |  |  |  |  |
| 26-Apr-96              | <u>91.0</u><br>20.1  |                     |  |  |  |  |  |
| 01-May-96<br>07-May-96 | 12.9                 |                     |  |  |  |  |  |
| 13-May-96              | 21.8                 |                     |  |  |  |  |  |
| 20-May-96              | 51.1                 |                     |  |  |  |  |  |
| 26-May-96              | 33.6                 |                     |  |  |  |  |  |
| 01-Jun-96              | 57.0                 |                     |  |  |  |  |  |
| 07-Jun-96              | 32.5                 |                     |  |  |  |  |  |
| 13-Jun-96              | 142.5                |                     |  |  |  |  |  |
| 19-Jun-96              | 32.5                 |                     |  |  |  |  |  |
| 27-Jun-96              | 14.6                 |                     |  |  |  |  |  |
| 01-Jul-96              | 11.8                 |                     |  |  |  |  |  |
| 07-Jul-96              | <u>18.0</u><br>9.6   |                     |  |  |  |  |  |
| 13-Jul-96<br>19-Jul-96 | 20.7                 |                     |  |  |  |  |  |
| 25-Jul-96              | 34.4                 |                     |  |  |  |  |  |
| 31-Jul-96              | 8.0                  |                     |  |  |  |  |  |
| 06-Aug-96              | 31.6                 |                     |  |  |  |  |  |
| 12-Aug-96              | 60.2                 |                     |  |  |  |  |  |
| 18-Aug-96              | 25.8                 |                     |  |  |  |  |  |
| 24-Aug-96              | 23.2                 |                     |  |  |  |  |  |
| 27-Aug-96              | *33.9                |                     |  |  |  |  |  |
| 30-Aug-96              | 10.4                 |                     |  |  |  |  |  |
| 05-Sep-96              | 28.0                 |                     |  |  |  |  |  |
| 11-Sep-96<br>17-Sep-96 | 73.0 80.0            |                     |  |  |  |  |  |
| 19-Sep-96              | 65.5                 |                     |  |  |  |  |  |
| 23-Sep-96              | 40.6                 |                     |  |  |  |  |  |
| 26-Sep-96              | 38.3                 |                     |  |  |  |  |  |
| 29-Sep-96              | 23.6                 |                     |  |  |  |  |  |
| 05-Oct-96              | 41.0                 |                     |  |  |  |  |  |
| 11-Oct-96              | 53.8                 |                     |  |  |  |  |  |
| 17-Oct-96              | 38.4                 |                     |  |  |  |  |  |
| 23-Oct-96              | 76.7                 |                     |  |  |  |  |  |
| 29-Oct-96<br>02-Nov-96 | <u>44.3</u><br>160.1 |                     |  |  |  |  |  |
| 02-N0V-96              | 20.3                 |                     |  |  |  |  |  |
| 10-Nov-96              | 105.6                |                     |  |  |  |  |  |
| 16-Nov-96              | 77.7                 |                     |  |  |  |  |  |
| 22-Nov-96              | 79.5                 |                     |  |  |  |  |  |
| 25-Nov-96              | 51.1                 |                     |  |  |  |  |  |
| 28-Nov-96              | 71.3                 |                     |  |  |  |  |  |
| 02-Dec-96              | 81.6                 |                     |  |  |  |  |  |
| 04-Dec-96              | 61.9                 |                     |  |  |  |  |  |
| 06-Dec-96<br>10-Dec-96 | <u>35.1</u><br>32.7  |                     |  |  |  |  |  |
| 10-Dec-96<br>16-Dec-96 | 91.9                 |                     |  |  |  |  |  |
| 22-Dec-96              | 65.5                 |                     |  |  |  |  |  |
| 06-Jan-97              | 64.9                 |                     |  |  |  |  |  |
| 09-Jan-97              | 69.2                 |                     |  |  |  |  |  |
| 15-Jan-97              | 83.3                 |                     |  |  |  |  |  |
| 21-Jan-97              | 60.2                 |                     |  |  |  |  |  |
| 27-Jan-97              | 28.8                 |                     |  |  |  |  |  |
| 02-Feb-97              | 34.5                 |                     |  |  |  |  |  |
| 08-Feb-97              | 84.8                 |                     |  |  |  |  |  |
| 14-Feb-97              | 20.0                 |                     |  |  |  |  |  |
| 20-Feb-97<br>26-Feb-97 | 60.3<br>97.3         |                     |  |  |  |  |  |
| 04-Mar-97              | 71.0                 |                     |  |  |  |  |  |
| or mar or              | 11.0                 |                     |  |  |  |  |  |

#### SPECIALIST CONSULTANT STUDIES

Part 6: Air Quality Assessment

Tomingley Gold Project Report No. 616/06

| Date                   | Date Monitoring locat |              |  |  |  |  |  |
|------------------------|-----------------------|--------------|--|--|--|--|--|
|                        | 59 Euchie St          | Frazer Court |  |  |  |  |  |
| 10-Mar-97<br>16-Mar-97 | <u>135.2</u><br>80.6  |              |  |  |  |  |  |
| 22-Mar-97              | 86.5                  |              |  |  |  |  |  |
| 03-Apr-97              | 104.8                 |              |  |  |  |  |  |
| 09-Apr-97              | 121.1                 |              |  |  |  |  |  |
| 15-Apr-97              | 130.9                 |              |  |  |  |  |  |
| 21-Apr-97              | 137.2                 |              |  |  |  |  |  |
| 27-Apr-97              | 26.8                  |              |  |  |  |  |  |
| 03-May-97              | 120.3                 |              |  |  |  |  |  |
| 06-May-97              | 116.5                 |              |  |  |  |  |  |
| 09-May-97              | 35.4                  |              |  |  |  |  |  |
| 15-May-97              | 186.0                 |              |  |  |  |  |  |
| 21-May-97              | 112.4                 |              |  |  |  |  |  |
| 27-May-97              | 71.8                  |              |  |  |  |  |  |
| 02-Jun-98              | 64.8                  |              |  |  |  |  |  |
| 08-Jun-97<br>14-Jun-97 | <u>24.1</u><br>20.5   |              |  |  |  |  |  |
| 20-Jun-97              | 56.7                  |              |  |  |  |  |  |
| 26-Jun-97              | 31.6                  |              |  |  |  |  |  |
| 02-Jul-97              | 52.2                  |              |  |  |  |  |  |
| 08-Jul-97              | 42.1                  |              |  |  |  |  |  |
| 14-Jul-97              | 69.4                  |              |  |  |  |  |  |
| 20-Jul-97              | 34.7                  |              |  |  |  |  |  |
| 26-Jul-97              | 33.8                  |              |  |  |  |  |  |
| 01-Aug-97              | 46.5                  |              |  |  |  |  |  |
| 07-Aug-97              | 35.7                  |              |  |  |  |  |  |
| 13-Aug-97              | 17.5                  |              |  |  |  |  |  |
| 19-Aug-97              | 44.5                  |              |  |  |  |  |  |
| 21-Aug-97              | 68.8                  |              |  |  |  |  |  |
| 25-Aug-97              | 25.5                  |              |  |  |  |  |  |
| 31-Aug-97              | 85.0                  |              |  |  |  |  |  |
| 06-Sep-97              | 17.9                  |              |  |  |  |  |  |
| 12-Sep-97              | <u>47.4</u><br>100.5  |              |  |  |  |  |  |
| 18-Sep-97<br>24-Sep-97 | 6.6                   |              |  |  |  |  |  |
| 30-Sep-97              | 24.0                  |              |  |  |  |  |  |
| 06-Oct-97              | 63.1                  |              |  |  |  |  |  |
| 12-Oct-97              | 48.5                  |              |  |  |  |  |  |
| 18-Oct-97              | 54.4                  |              |  |  |  |  |  |
| 24-Oct-97              | 62.4                  |              |  |  |  |  |  |
| 30-Oct-97              | 148.2                 |              |  |  |  |  |  |
| 05-Nov-97              | 98.0                  |              |  |  |  |  |  |
| 11-Nov-97              | 45.4                  |              |  |  |  |  |  |
| 17-Nov-97              | 43.1                  |              |  |  |  |  |  |
| 23-Nov-97              | 50.5                  |              |  |  |  |  |  |
| 27-Nov-97              | 85.2                  |              |  |  |  |  |  |
| 29-Nov-97              | 215.8                 |              |  |  |  |  |  |
| 05-Dec-97              | 123.4                 |              |  |  |  |  |  |
| 11-Dec-97              | 108.2                 |              |  |  |  |  |  |
| 18-Dec-97              | 97.0                  |              |  |  |  |  |  |
| 05-Jan-98<br>10-Jan-98 | <u>27.3</u><br>43.8   |              |  |  |  |  |  |
| 16-Jan-98              | 72.0                  |              |  |  |  |  |  |
| 22-Jan-98              | 61.5                  |              |  |  |  |  |  |
| 29-Jan-98              | 49.1                  |              |  |  |  |  |  |
| 03-Feb-98              | 151.2                 |              |  |  |  |  |  |
| 09-Feb-98              | 79.2                  |              |  |  |  |  |  |
| 15-Feb-98              | 61.8                  |              |  |  |  |  |  |
| 21-Feb-98              | 69.0                  |              |  |  |  |  |  |
| 27-Feb-98              | 167.7                 |              |  |  |  |  |  |
| 05-Mar-98              | 91.9                  |              |  |  |  |  |  |
| 11-Mar-98              | 64.2                  |              |  |  |  |  |  |
| 17-Mar-98              | 109.3                 |              |  |  |  |  |  |
| 23-Mar-98              | 126.2                 |              |  |  |  |  |  |
| 29-Mar-98              | 108.3                 |              |  |  |  |  |  |
| 04-Apr-98              | 122.7                 |              |  |  |  |  |  |
| 22-Apr-98              | 11.9                  |              |  |  |  |  |  |
| 28-Apr-98              | 32.5                  |              |  |  |  |  |  |
| 04-May-98<br>10-May-98 | <u>13.5</u><br>27.7   |              |  |  |  |  |  |
| 16-May-98              | 6.9                   |              |  |  |  |  |  |
| 22-May-98              | 28.7                  |              |  |  |  |  |  |
| 22-May-98<br>28-May-98 | 39.9                  |              |  |  |  |  |  |
| 03-Jun-98              | 37.8                  |              |  |  |  |  |  |
| 15-Jun-98              | 50.4                  |              |  |  |  |  |  |
| 21-Jun-98              | 8.0                   |              |  |  |  |  |  |
| 27-Jun-98              | 10.5                  |              |  |  |  |  |  |
| 03-Jul-98              | 17.0                  |              |  |  |  |  |  |
|                        | 13.7                  | *            |  |  |  |  |  |

#### SPECIALIST CONSULTANT STUDIES

Part 6: Air Quality Assessment

Tomingley Gold Project Report No. 616/06

|                        | Monitoring location ID |              |  |  |  |  |  |  |
|------------------------|------------------------|--------------|--|--|--|--|--|--|
| Date                   | 59 Euchie St           | Frazer Court |  |  |  |  |  |  |
| 15-Jul-98              | 25.9                   |              |  |  |  |  |  |  |
| 21-Jul-98              | 1.5                    |              |  |  |  |  |  |  |
| 27-Jul-98              | 5.0                    |              |  |  |  |  |  |  |
| 02-Aug-98              | 9.5                    |              |  |  |  |  |  |  |
| 08-Aug-98<br>10-Sep-98 | 7.2<br>66.8            |              |  |  |  |  |  |  |
| 13-Sep-98              | 9.6                    |              |  |  |  |  |  |  |
| 19-Sep-98              | 60.8                   |              |  |  |  |  |  |  |
| 25-Sep-98              | 17.2                   |              |  |  |  |  |  |  |
| 29-Sep-98              | 67.3                   |              |  |  |  |  |  |  |
| 01-Oct-98              | 78.9                   |              |  |  |  |  |  |  |
| 07-Oct-98              | 8.2                    |              |  |  |  |  |  |  |
| 13-Oct-98              | 27.3                   |              |  |  |  |  |  |  |
| 19-Oct-98              | 11.6                   |              |  |  |  |  |  |  |
| 25-Oct-98<br>31-Oct-98 | 59.3<br>27.5           |              |  |  |  |  |  |  |
| 06-Nov-98              | 75.7                   |              |  |  |  |  |  |  |
| 12-Nov-98              | 17.5                   |              |  |  |  |  |  |  |
| 18-Nov-98              | 30.8                   |              |  |  |  |  |  |  |
| 24-Nov-98              | 44.0                   |              |  |  |  |  |  |  |
| 30-Nov-98              | 33.0                   |              |  |  |  |  |  |  |
| 06-Dec-98              | 54.5                   |              |  |  |  |  |  |  |
| 08-Dec-98              | 86.4                   |              |  |  |  |  |  |  |
| 12-Dec-98              | 56.6                   |              |  |  |  |  |  |  |
| 18-Dec-98<br>30-Dec-98 | <u>46.5</u><br>51.1    |              |  |  |  |  |  |  |
| 14-Jan-99              | 172.5                  |              |  |  |  |  |  |  |
| 17-Jan-99              | 53.6                   |              |  |  |  |  |  |  |
| 23-Jan-99              | 43.4                   |              |  |  |  |  |  |  |
| 29-Jan-99              | 24.4                   |              |  |  |  |  |  |  |
| 04-Feb-99              | 43.4                   |              |  |  |  |  |  |  |
| 10-Feb-99              | 160.7                  |              |  |  |  |  |  |  |
| 16-Feb-99              | 53.5                   |              |  |  |  |  |  |  |
| 22-Feb-99<br>28-Feb-99 | <u>113.4</u><br>38.0   |              |  |  |  |  |  |  |
| 06-Mar-99              | 42.1                   |              |  |  |  |  |  |  |
| 12-Mar-99              | 68.8                   |              |  |  |  |  |  |  |
| 18-Mar-99              | 23.2                   |              |  |  |  |  |  |  |
| 24-Mar-99              | 57.8                   |              |  |  |  |  |  |  |
| 30-Mar-99              | 41.3                   |              |  |  |  |  |  |  |
| 05-Apr-99              | 56.9                   |              |  |  |  |  |  |  |
| 11-Apr-99<br>17-Apr-99 | <u>89.7</u><br>108.9   |              |  |  |  |  |  |  |
| 23-Apr-99              | 127.9                  |              |  |  |  |  |  |  |
| 29-Apr-99              | 137.7                  |              |  |  |  |  |  |  |
| 05-May-99              | 105.6                  |              |  |  |  |  |  |  |
| 11-May-99              | 33.2                   |              |  |  |  |  |  |  |
| 17-May-99              | 47.4                   |              |  |  |  |  |  |  |
| 23-May-99              | 28.0                   |              |  |  |  |  |  |  |
| 29-May-99<br>04-Jun-99 | 57.4<br>140.3          |              |  |  |  |  |  |  |
| 10-Jun-99              | 16.5                   |              |  |  |  |  |  |  |
| 16-Jun-99              | 51.2                   |              |  |  |  |  |  |  |
| 29-Jun-99              | 52.4                   |              |  |  |  |  |  |  |
| 04-Jul-99              | 14.8                   |              |  |  |  |  |  |  |
| 10-Jul-99              | 17.5                   |              |  |  |  |  |  |  |
| 16-Jul-99              | 14.0                   |              |  |  |  |  |  |  |
| 22-Jul-99<br>28-Jul-99 | 11.3<br>27.0           |              |  |  |  |  |  |  |
| 03-Aug-99              | 27.0 26.8              |              |  |  |  |  |  |  |
| 09-Aug-99              | 18.3                   |              |  |  |  |  |  |  |
| 15-Aug-99              | 14.7                   |              |  |  |  |  |  |  |
| 21-Aug-99              | 29.2                   |              |  |  |  |  |  |  |
| 27-Aug-99              | 9.6                    |              |  |  |  |  |  |  |
| 02-Sep-99              | 21.6                   |              |  |  |  |  |  |  |
| 08-Sep-99              | 16.8                   |              |  |  |  |  |  |  |
| 14-Sep-99<br>20-Sep-99 | 33.5<br>34.2           |              |  |  |  |  |  |  |
| 20-Sep-99<br>26-Sep-99 | <u> </u>               |              |  |  |  |  |  |  |
| 02-Oct-99              | 18.9                   |              |  |  |  |  |  |  |
| 08-Oct-99              | 36.0                   |              |  |  |  |  |  |  |
| 14-Oct-99              | 42.1                   |              |  |  |  |  |  |  |
| 20-Oct-99              | 19.1                   |              |  |  |  |  |  |  |
| 26-Oct-99              | 22.1                   |              |  |  |  |  |  |  |
| 01-Nov-99              | 29.2                   |              |  |  |  |  |  |  |
| 07-Nov-99<br>13-Nov-99 | 19.4<br>31.5           |              |  |  |  |  |  |  |
| 13-Nov-99<br>19-Nov-99 | 49.7                   |              |  |  |  |  |  |  |
| 13-110/-33             | 43.1                   | I            |  |  |  |  |  |  |

#### SPECIALIST CONSULTANT STUDIES

Part 6: Air Quality Assessment

Tomingley Gold Project Report No. 616/06

| Date                   | Monitorin           | g location ID |
|------------------------|---------------------|---------------|
|                        | 59 Euchie St        | Frazer Court  |
| 25-Nov-99              | 67.5                |               |
| 01-Dec-99              | 66.1                |               |
| 07-Dec-99<br>08-Dec-99 | 105.7               |               |
| 14-Dec-99              | 40.9<br>80.5        |               |
| 20-Dec-99              | 28.0                |               |
| 07-Jan-00              | 71.4                |               |
| 12-Jan-00              | 70.6                |               |
| 12-541-60<br>18-Jan-00 | 69.2                |               |
| 24-Jan-00              | 89.5                |               |
| 30-Jan-00              | 26.7                |               |
| 05-Feb-00              | 63.3                |               |
| 10-Feb-00              | 88.7                |               |
| 23-Feb-00              | 29.7                |               |
| 29-Feb-00              | 71.8                |               |
| 06-Mar-00              | 68.5                |               |
| 17-Apr-00              | 20.1                |               |
| 23-Apr-00              | 28.6                |               |
| 29-Apr-00              | 108.6               |               |
| 13-May-00              | 31.0                |               |
| 17-May-00              | 33.2                |               |
| 24-May-00              | 38.7                |               |
| 29-May-00              | 16.3                |               |
| 04-Jun-00              | 9.4                 |               |
| 10-Jun-00              | 20.6                |               |
| 16-Jun-00              | 33.9                |               |
| 22-Jun-00              | 27.2                |               |
| 28-Jun-00<br>04-Jul-00 | 13.6                |               |
| 10-Jul-00              | <u>38.6</u><br>12.5 |               |
| 16-Jul-00              | 12.5                |               |
| 22-Jul-00              | 16.1                |               |
| 22-50-00<br>28-Jul-00  | 12.9                |               |
| 03-Aug-00              | 20.9                |               |
| 09-Aug-00              | 4.7                 |               |
| 15-Aug-00              | 9.2                 |               |
| 21-Aug-00              | 11.3                |               |
| 27-Aug-00              | 5.9                 |               |
| 02-Sep-00              | 8.7                 |               |
| 08-Sep-00              | 19.5                |               |
| 14-Sep-00              | 61.9                |               |
| 20-Sep-00              | 66.1                |               |
| 26-Sep-00              | 107.5               |               |
| 02-Oct-00              | 89.0                |               |
| 08-Oct-00              | 110.4               |               |
| 14-Oct-00              | 31.6                |               |
| 20-Oct-00              | 14.8                |               |
| 26-Oct-00              | 24.1                |               |
| 01-Nov-00              | 57.2                |               |
| 07-Nov-00              | 45.4                |               |
| 13-Nov-00              | 19.8                |               |
| 19-Nov-00              | 11.2                |               |
| 25-Nov-00              | 48.5                |               |
| 01-Dec-00              | 35.7                |               |
| 07-Dec-00              | 46.1                |               |
| 13-Dec-00              | 83.9                |               |
| 19-Dec-00              | 49                  |               |
| 25-Dec-00              | 48.1                |               |
| 12-Jan-01              |                     | 50.1          |
| 18-Jan-01              |                     | 60.4          |
| 24-Jan-01              |                     | 75.7          |
| 30-Jan-01              |                     | 60.5          |
| 01-Feb-01              |                     | 46            |
| 05-Feb-01              |                     | 37.1          |
| 11-Feb-01              |                     | 36.6          |
| 17-Feb-01              |                     | 29.7          |
| 23-Feb-01              |                     | 56.0          |
| 01-Mar-01              |                     | 42.1          |
| 07-Mar-01              |                     | 25.1          |
| 13-Mar-01              |                     | 38.5          |
| 19-Mar-01              |                     | 24.0          |
| 25-Mar-01              |                     | 13.6          |
| 31-Mar-01              |                     | 24.1          |
| 06-Apr-01              |                     | 60.6          |
| 12-Apr-01              |                     | 43.8          |
| 18-Apr-01              |                     | 74.5          |
| 24-Apr-01              |                     | 15.4          |
| 30-Apr-01<br>06-May-01 |                     | 16.8          |
| UD-1/(2)/-(1)          |                     | 13.2          |

#### SPECIALIST CONSULTANT STUDIES

Part 6: Air Quality Assessment

#### ALKANE RESOURCES LTD

Tomingley Gold Project Report No. 616/06

|                        | Monitoring   | Monitoring location ID |  |  |  |  |  |  |
|------------------------|--------------|------------------------|--|--|--|--|--|--|
| Date                   | 59 Euchie St | Frazer Court           |  |  |  |  |  |  |
| 12-May-01              |              | 53.5                   |  |  |  |  |  |  |
| 18-May-01              |              | 42.0                   |  |  |  |  |  |  |
| 24-May-01              |              | 49.2                   |  |  |  |  |  |  |
| 30-May-01              |              | 18.7                   |  |  |  |  |  |  |
| 05-Jun-01              |              | 30.0                   |  |  |  |  |  |  |
| 11-Jun-01              |              | 11.2                   |  |  |  |  |  |  |
| 17-Jun-01<br>23-Jun-01 |              | <u> </u>               |  |  |  |  |  |  |
| 23-Jun-01              |              | 22.3                   |  |  |  |  |  |  |
| 05-Jul-01              |              | 33.9                   |  |  |  |  |  |  |
| 11-Jul-01              |              | 14.6                   |  |  |  |  |  |  |
| 17-Jul-01              |              | 12.3                   |  |  |  |  |  |  |
| 23-Jul-01              |              | 20.5                   |  |  |  |  |  |  |
| 29-Jul-01              |              | 11.3                   |  |  |  |  |  |  |
| 04-Aug-01              |              | 16.9                   |  |  |  |  |  |  |
| 10-Aug-01              |              | 12.9                   |  |  |  |  |  |  |
| 16-Aug-01              |              | 80.7                   |  |  |  |  |  |  |
| 22-Aug-01              |              | 19.4                   |  |  |  |  |  |  |
| 28-Aug-01<br>03-Sep-01 |              | 5.7                    |  |  |  |  |  |  |
| 09-Sep-01              |              | 26.1                   |  |  |  |  |  |  |
| 15-Sep-01              |              | 6.5                    |  |  |  |  |  |  |
| 21-Sep-01              |              | 34.6                   |  |  |  |  |  |  |
| 27-Sep-01              |              | 21.6                   |  |  |  |  |  |  |
| 03-Oct-01              |              | 17.6                   |  |  |  |  |  |  |
| 09-Oct-01              |              | 22.2                   |  |  |  |  |  |  |
| 15-Oct-01              |              | 11.4                   |  |  |  |  |  |  |
| 21-Oct-01              |              | 23.7                   |  |  |  |  |  |  |
| 27-Oct-01              |              | 32.6                   |  |  |  |  |  |  |
| 02-Nov-01              |              | 58.0                   |  |  |  |  |  |  |
| 08-Nov-01              |              | 14.1                   |  |  |  |  |  |  |
| 14-Nov-01<br>20-Nov-01 |              | <u> </u>               |  |  |  |  |  |  |
| 02-Dec-01              |              | 44.1<br>46.8           |  |  |  |  |  |  |
| 02-Dec-01              |              | 21.5                   |  |  |  |  |  |  |
| 10-Dec-01              |              | 43.8                   |  |  |  |  |  |  |
| 14-Dec-01              |              | 52.6                   |  |  |  |  |  |  |
| 19-Dec-01              |              | 116.0                  |  |  |  |  |  |  |
| 20-Dec-01              |              | 151.0                  |  |  |  |  |  |  |
| 26-Dec-01              |              | 101.2                  |  |  |  |  |  |  |
| 01-Jan-02              |              | 65.0                   |  |  |  |  |  |  |
| 07-Jan-02              |              | 52.4                   |  |  |  |  |  |  |
| 13-Jan-02              |              | 57.5                   |  |  |  |  |  |  |
| 19-Jan-02              |              | 134.7                  |  |  |  |  |  |  |
| 22-Jan-02              |              | 44.5<br>26.5           |  |  |  |  |  |  |
| 25-Jan-02<br>31-Jan-02 |              | 39.4                   |  |  |  |  |  |  |
| 06-Feb-02              |              | 24.7                   |  |  |  |  |  |  |
| 12-Feb-02              |              | 31.1                   |  |  |  |  |  |  |
| 18-Feb-02              |              | 18.1                   |  |  |  |  |  |  |
| 24-Feb-02              |              | 25.9                   |  |  |  |  |  |  |
| 02-Mar-02              |              | 39.3                   |  |  |  |  |  |  |
| 08-Mar-02              |              | 55.4                   |  |  |  |  |  |  |
| 14-Mar-02              |              | 67.1                   |  |  |  |  |  |  |
| 26-Mar-02              |              | 216.7                  |  |  |  |  |  |  |
| 01-Apr-02              |              | 17.8                   |  |  |  |  |  |  |
| 07-Apr-02<br>13-Apr-02 |              | 47.2<br>41.9           |  |  |  |  |  |  |
| 13-Apr-02<br>19-Apr-02 |              | 24.8                   |  |  |  |  |  |  |
| 25-Apr-02              |              | 71.7                   |  |  |  |  |  |  |
| 01-May-02              |              | 41.2                   |  |  |  |  |  |  |
| 07-May-02              |              | 69.6                   |  |  |  |  |  |  |
| 09-May-02              |              | 66.1                   |  |  |  |  |  |  |
| 13-May-02              |              | 49.7                   |  |  |  |  |  |  |
| 19-May-02              |              | 20.2                   |  |  |  |  |  |  |
| 25-May-02              |              | 5.2                    |  |  |  |  |  |  |
| 31-May-02              |              | 26.3                   |  |  |  |  |  |  |
| 06-Jun-02              |              | 54.3                   |  |  |  |  |  |  |
| 12-Jun-02              |              | 39.6                   |  |  |  |  |  |  |
| 18-Jun-02<br>24-Jun-02 |              | 20.4 32.3              |  |  |  |  |  |  |
| 24-Jun-02<br>          |              | 23.9                   |  |  |  |  |  |  |
| 06-Jul-02              |              | 16.5                   |  |  |  |  |  |  |
| 12-Jul-02              |              | 41.5                   |  |  |  |  |  |  |
| 18-Jul-02              |              | 8.2                    |  |  |  |  |  |  |
| 24-Jul-02              |              | 23.0                   |  |  |  |  |  |  |
| 30-Jul-02              |              | 29.6                   |  |  |  |  |  |  |
| 05-Aug-02              |              | 28.2                   |  |  |  |  |  |  |
|                        |              |                        |  |  |  |  |  |  |

#### 6 - 100

#### SPECIALIST CONSULTANT STUDIES

Part 6: Air Quality Assessment

Tomingley Gold Project Report No. 616/06

| Date      | Monitoring location ID |              |  |  |  |  |  |
|-----------|------------------------|--------------|--|--|--|--|--|
| Date      | 59 Euchie St           | Frazer Court |  |  |  |  |  |
| 11-Aug-02 |                        | 58.2         |  |  |  |  |  |
| 17-Aug-02 |                        | 40.0         |  |  |  |  |  |
| 23-Aug-02 |                        | 47.0         |  |  |  |  |  |
| 29-Aug-02 |                        | 56.8         |  |  |  |  |  |
| 04-Sep-02 |                        | 15.5         |  |  |  |  |  |
| 12-Sep-02 |                        | 14.6         |  |  |  |  |  |
| 16-Sep-02 |                        | 169.0        |  |  |  |  |  |
| 22-Sep-02 |                        | 25.6         |  |  |  |  |  |
| 28-Sep-02 |                        | 77.5         |  |  |  |  |  |
| 04-Oct-02 |                        | 153.5        |  |  |  |  |  |
| 10-Oct-02 |                        | 63.4         |  |  |  |  |  |
| 16-Oct-02 |                        | 76.4         |  |  |  |  |  |
| 22-Oct-02 |                        | 70.1         |  |  |  |  |  |
| 23-Oct-02 |                        | *461.7       |  |  |  |  |  |
| 28-Oct-02 |                        | 47.1         |  |  |  |  |  |

\* Dust storm

# **Appendix 3**

## **Estimated Dust Emissions**

(No. of pages including blank pages = 12)

Note: A colour version of this Appendix is available on the Project CD

*Tomingley Gold Project Report No. 616/06* 

This page has intentionally been left blank

### **Tomingley Gold Project Emissions Inventory**

#### Description of operations

The dust emission inventories have been prepared using the operational description of the proposed mining activities provided by R.W. Corkery & Co.

Topsoil would be removed using dozers and excavators then loaded to trucks for emplacement at various waste emplacement areas. Following removal of the waste rock, the exposed ore would be cleaned using a dozer and/or grader. The ore would then be ripped, loaded into haul trucks using an excavator or front-end-loader (FEL) and transported to the ROM pad where it will then move through a series of conveyors. The ore will go through various stages of crushing and screening before moving onto the processing plant. The ore will then be transported off-site via light and medium vehicles.

#### **Emission estimates**

Estimated emissions are presented for all significant dust generating activities associated with the operations. The relevant emission factors used for the study are described below.

All activities have been modelled for 24 hours per day, with a few exceptions. Topsoil removal has been assumed to occur between the hours of 5am and 7pm. Blasting has been assumed to occur between the hours of 9am and 5pm and dozers working on waste dumps has been assumed to occur between the hours of 7am and 7pm.

Dust from wind erosion is assumed to occur over 24 hours per day, however, wind erosion is also assumed to be proportional to the third power of wind speed. This will mean that most wind erosion occurs in the day when wind speeds are highest.

### Dozers on topsoil

Emissions from dozers on overburden have been calculated using the US EPA emission factor equation (**US EPA, 1985 and updates**). The equation is as follows:

### Equation 1

$$E_{TSP} = 2.6 \times \frac{s^{1.2}}{M^{1.3}}$$
 kg/hour  
where,  
$$E_{TSP} = TSP \ emissions$$
  
s = silt content (%), and  
M = moisture (%)

Based on information provided by Alkane, it was assumed the silt content of the topsoil is 10% and the moisture content is 8.4%. This gives an emission factor of 2.6 kg/h.

#### Drilling overburden

The emission factor used for drilling has been taken to be 0.59 kg/hole (**US EPA, 1985 and updates**).

The number of holes per year was calculated based on information provided.

#### **Blasting overburden**

Report No. 616/06

TSP emissions from blasting were estimated using the **US EPA (1985 and updates)** emission factor equation given in **Equation 2**.

### **Equation 2**

 $E_{TSP} = 0.00022 \times A^{1.5}$  kg/blast where, A = area to be blasted in m<sup>2</sup>

The area to be blasted per blast and number of blasts per year were calculated based on information provided.

#### Loading material / dumping topsoil and overburden using shovels/excavators/FELs

Each tonne of material loaded will generate a quantity of TSP that will depend on the wind speed and the moisture content. **Equation 3** shows the relationship between these variables.

#### **Equation 3**

$$E_{TSP} = k \times 0.0016 \times \left(\frac{\left(\frac{U}{2.2}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}}\right) \qquad kg/t$$

.

where,  $E_{TSP}$ = TSP emissions k = 0.74 U = wind speed(m/s) M = moisture content(%)[where  $0.25 \le M \le 4.8$ ]

The wind speed value was taken from the 2003 meteorological dataset described in **Section 4.2**. The moisture content for overburden was assumed to be 8.4% for topsoil and 4.8% for overburden.

#### Hauling material / product on unsealed surfaces

The US EPA (1985 and updates) emission factor equation has been used. It is given below in Equation 4.

### **Equation 4**

 $E = k (s/12)^{a} (W/3)^{b}$ 

Where, k = 1.38 s = surface material silt content (%) a = 0.7 W = mean vehicle weight (tons)b = 0.45

### Dozers on overburden

Emissions from dozers on overburden have been calculated using the US EPA emission factor equation (**US EPA**, **1985 and updates**), per **Equation 1**.

The silt content in the overburden was assumed to be 10%, and the moisture content 4.8%. This results in an emission factor of 5.362 kg/h.

#### Loading/unloading material

The US EPA (1985 and updates) emission factor equation has been used. It is given below in Equation 4.

### **Equation 5**

$$E_{\rm TSP} = \frac{0.580}{M^{1.2}}$$
 kg/t

where,  $E_{TSP} = TSP \ emissions$  $M = moisture \ (\%)$ 

The moisture content for both overburden and ore was assumed to be 4.8%.

#### Wind erosion

The emission factor for wind erosion was assumed to be 0.4kg/ha/h as per SPCC (1983).

### Grading roads

Estimations of TSP emissions from grading roads have been made using the **US EPA (1985** and updates) emission factor equation (Equation 6).

### **Equation 6**

 $E_{TSP} = 0.0034 \times S^{2.5}$  kg/VKT where, S = speed of the grader in km/h (taken to be 8 km/h)

### Primary and secondary crushing of material

The emission factor used for primary crushing of material has been taken to be 0.2 kg/t (NPI Emission Estimation Technique Manual for Gold Ore Processing). It has been assumed that there would be a reduction of TSP emissions due to it being an enclosed area. A 90% control has been applied.

The emission factor used for secondary crushing of material has been taken to be 0.6 kg/t (NPI Emission Estimation Technique Manual for Gold Ore Processing). It has been assumed that there would be a reduction of TSP emissions due to it being an enclosed area. A 90% control has been applied.

#### Conveying of material

The emission factor used for the conveying of material has been taken to be 0.4kg/t (**NPI**, **2006**).

| 6 | - | 1 | 06 |
|---|---|---|----|
|   |   |   |    |

| Table A3.1                                |
|-------------------------------------------|
| Scenario 1 – Detailed Emission Estimation |

| ACTIVITY                                         | TSP<br>emission/Scenario<br>2 in (kg/y) | Intensity  | Units    | Emission<br>factor | Units    | Variable<br>1 | Units                          | Variable<br>2 | Units              | Variable<br>3 | Units       | Variable<br>4 | Units  | Variable<br>5 | Units        | Variable<br>6 | Units     |
|--------------------------------------------------|-----------------------------------------|------------|----------|--------------------|----------|---------------|--------------------------------|---------------|--------------------|---------------|-------------|---------------|--------|---------------|--------------|---------------|-----------|
| OB - Drilling                                    | 68,424                                  | 115,972    | holes/y  | 0.59               | kg/hole  |               |                                |               |                    |               |             |               |        |               |              |               |           |
| OB - Blasting                                    | 16,330                                  | 1,160      | blasts/y | 14                 | kg/blast | 1600          | Area of blast in square metres | 100           | holes/blast        |               |             |               |        |               |              |               |           |
| OB - Excavator loading OB to haul truck          | 5,193                                   | 17,638,772 | t/y      | 0.00029            | kg/t     | 0.847         | average of (wind speed/2.2)^   | 4.8           | moisture content i | n %           |             |               |        |               |              |               |           |
| OB - Hauling from Caloma 1 OC to WRE 3           | 90,270                                  | 7,937,447  |          | 0.0114             |          |               | t/load                         | 119           | Vehicle gross mas  | 1.1           | km/return t | 3.76          | kg/VKT |               | % silt conte | 75            | % control |
| OB - Hauling from Wyoming 1 OC to WRE 1          | 6,200                                   | 2,998,591  | t/y      | 0.0021             | kg/t     | 90.9          | t/load                         | 119           | Vehicle gross mas  | 0.2           | km/return t | 3.76          | kg/VKT | 5             | % silt conte | 75            | % control |
| OB - Hauling from Wyoming 3 OC to WRE 2          | 20,789                                  | 6,702,733  | t/y      | 0.0031             | kg/t     | 90.9          | t/load                         | 119           | Vehicle gross mas  | 0.3           | km/return t | 3.76          | kg/VKT | 5             | % silt conte | 75            | % control |
| OB- Emplacing at WRE 3                           | 2,337                                   | 7,937,447  | t/y      | 0.00029            | kg/t     | 0.847         | average of (wind speed/2.2)^   | 4.8           | moisture content i | n %           |             |               |        |               |              |               |           |
| OB- Emplacing at WRE 1                           | 883                                     | 2,998,591  | t/y      | 0.00029            | kg/t     | 0.847         | average of (wind speed/2.2)^   | 4.8           | moisture content i | n %           |             |               |        |               |              |               |           |
| OB- Emplacing at WRE 2                           | 1,973                                   | 6,702,733  | t/y      | 0.00029            | kg/t     | 0.847         | average of (wind speed/2.2)^   | 4.8           | moisture content i | n %           |             |               |        |               |              |               |           |
| OB - Dozers on OB                                | 36,640                                  | 6,833      | h/y      | 5.362              | kg/h     | 10            | silt content in %              | 4.8           | moisture content i | n %           |             |               |        |               |              |               |           |
| ORE - Drilling                                   | 1,277                                   | 12,770     |          |                    | kg/hole  |               |                                |               |                    |               |             |               |        |               |              |               |           |
| ORE - Blasting                                   | 806                                     | 57         |          |                    | kg/blast | 1600          | Area of blast in square metres | 223           | holes/blast        |               |             |               |        |               |              |               |           |
| ORE - Dozers ripping/pushing/clean-up            | 109,963                                 | 1,752      |          | 62.7642            |          |               | silt content in %              | 4.8           | moisture content i | n %           |             |               |        |               |              |               |           |
| ORE - Sh/Ex/FELs loading open pit ore to trucks  | 132,623                                 | 1,502,037  |          | 0.08830            |          |               | moisture content in %          |               |                    |               |             |               |        |               |              |               |           |
| ORE - Hauling open pit ore from Caloma 1 to ROM  | 15,374                                  | 675,917    |          | 0.0227             |          |               | t/load                         |               | Vehicle gross mas  |               | km/return t |               | kg/VKT | 5             | % silt conte |               | % control |
| ORE - Hauling open pit ore from Wyoming 1 to ROM | 8,184                                   | 255,346    | t/y      | 0.0321             |          |               | t/load                         |               | Vehicle gross mas  |               | km/return t |               | kg/VKT | 5             | % silt conte |               | % control |
| ORE - Hauling open pit ore from Wyoming 3 to ROM | 7,081                                   | 570,774    | t/y      | 0.0124             | kg/t     | 90.9          | t/load                         | 119           | Vehicle gross mas  | 1.2           | km/return t | 3.76          | kg/VKT | 5             | % silt conte | 75            | % control |
| ORE - Unloading ROM to ROM stockpiles            | 442                                     | 1,502,037  | t/y      | 0.00029            | kg/t     | 0.847         | average of (wind speed/2.2)^   | 4.8           | moisture content i | n %           |             |               |        |               |              |               |           |
| ORE - FEL unloading ROM from stockpiles to ROM   | 442                                     | 1,502,037  | t/y      | 0.00029            | kg/t     | 0.847         | average of (wind speed/2.2)^   | 4.8           | moisture content i | n %           |             |               |        |               |              |               |           |
| ORE - Primary Crushing                           | 30,041                                  | 1,502,037  | t/y      | 0.2                | kg/t     |               |                                |               |                    | 0.1           | %control    |               |        |               |              |               |           |
| ORE - Conveying to Screen Building               | 46                                      | 0.0132     | ha       | 0.4                | kg/ha/h  | 8760          | h/y                            |               |                    |               |             |               |        |               |              |               |           |
| ORE - Unloading ore from conveyor to Screen      | 442                                     | 1,502,037  | t/y      | 0.0003             | kg/t     | 0.847         | average of (wind speed/2.2)^   | 4.8           | moisture content i | 0.3           | %control    |               |        |               |              |               |           |
| ORE - Screening                                  | 1,878                                   | 1,502,037  | t/y      | 0.0125             | kg/t     |               |                                |               |                    | 0.1           | %control    |               |        |               |              |               |           |
| ORE - Conveying oversized material to Crushing   | 46                                      | 0.0132     | ha       | 0.4                | kg/ha/h  | 8760          | h/y                            |               |                    |               |             |               |        |               |              |               |           |
| ORE - Unloading oversized ore from conveyor to   | 126                                     | 1,426,935  | t/y      | 0.0003             | kg/t     | 0.847         | average of (wind speed/2.2)^   | 4.8           | moisture content i | 0.3           | %control    |               |        |               |              |               |           |
| ORE - Secondary Crushing                         | 85,616                                  | 1,426,935  | t/y      | 0.6                | kg/t     |               |                                |               |                    | 0.1           | %control    |               |        |               |              |               |           |
| ORE - Conveying oversized material to Screen     | 46                                      | 0.0132     | ha       | 0.4                | kg/ha/h  | 8760          | h/y                            |               |                    |               |             |               |        |               |              |               |           |
| ORE - Conveying undersized material to Surge Bin | 27                                      | 0.0078     | ha       | 0.4                | kg/ha/h  | 8760          | h/y                            |               |                    |               |             |               |        |               |              |               |           |
| ORE - Unloading undersized ore from conveyor to  | 7                                       | 75,102     | t/y      | 0.0003             | kg/t     | 0.847         | average of (wind speed/2.2)^   | 4.8           | moisture content i | 0.3           | %control    |               |        |               |              |               |           |
| ORE - Conveying undersized material from Surge   | 44                                      | 0.0125     | ha       | 0.4                | kg/ha/h  | 8760          | h/y                            |               |                    |               |             |               |        |               |              |               |           |
| ORE - Unloading undersized ore from conveyor to  | 22                                      | 75,102     | t/y      | 0.0003             | kg/t     | 0.847         | average of (wind speed/2.2)^   | 4.8           | moisture content i | 0.1           | %control    |               |        |               |              |               |           |
| WE - OB dump areas                               | 245,280                                 | 140        | ha       | 0.4                | kg/ha/h  | 8760          | h/y                            |               |                    | 0.5           | %control    |               |        |               |              |               |           |
| WE - Residue Storage                             | 51,824                                  | 49         | ha       | 0.4                | kg/ha/h  | 8760          | h/y                            |               |                    | 0.3           | %control    |               |        |               |              |               |           |
| WE - Open pit                                    | 198,677                                 | 57         | ha       | 0.4                | kg/ha/h  | 8760          | h/y                            |               |                    |               |             |               |        |               |              |               |           |
| WE - ROM stockpiles                              | 1,402                                   |            | ha       |                    | kg/ha/h  | 8760          |                                |               |                    | 0.5           | %control    |               |        |               |              |               |           |
| Grading roads                                    | 86,264                                  | 140,160    | km       | 0.6155             | kg/VKT   | 8             | speed of graders in km/h       |               |                    |               |             |               |        |               |              |               |           |

Part 6: Air Quality Assessment

#### 6 - 107

#### Table A3.2

#### Scenario 2 - Source allocation

| ACTIVITY                                                         |    |    |    |    |    |    |    |    | S  | ource | ID |    |    |    |    |    |    |    |    |
|------------------------------------------------------------------|----|----|----|----|----|----|----|----|----|-------|----|----|----|----|----|----|----|----|----|
| OB - Drilling                                                    | 10 | 11 | 12 | 13 | 14 | 19 | 20 | 21 | 22 | 26    | 27 | 28 |    |    |    |    |    |    |    |
| OB - Blasting                                                    | 10 | 11 | 12 | 13 | 14 | 19 | 20 | 21 | 22 | 26    | 27 | 28 |    |    |    |    |    |    |    |
| OB - Excavator loading OB to haul truck                          | 10 | 11 | 12 | 13 | 14 | 19 | 20 | 21 | 22 | 26    | 27 | 28 |    |    |    |    |    |    |    |
| OB - Hauling from Caloma 1 OC to WRE 3                           | 6  | 7  | 10 | 11 | 12 | 13 | 14 |    |    |       |    |    |    |    |    |    |    |    |    |
| OB - Hauling from Wyoming 1 OC to WRE 1                          | 18 | 19 | 21 | 22 | 23 | 24 | 25 |    |    |       |    |    |    |    |    |    |    |    |    |
| OB - Hauling from Wyoming 3 OC to WRE 2                          | 26 | 27 | 28 | 31 | 33 | 35 |    |    |    |       |    |    |    |    |    |    |    |    |    |
| OB- Emplacing at WRE 3                                           | 1  | 2  | 3  | 4  | 5  | 6  | 7  |    |    |       |    |    |    |    |    |    |    |    |    |
| OB- Emplacing at WRE 1                                           | 23 | 24 | 25 |    |    |    |    |    |    |       |    |    |    |    |    |    |    |    |    |
| OB- Emplacing at WRE 2                                           | 30 | 31 | 32 | 33 | 34 | 35 |    |    |    |       |    |    |    |    |    |    |    |    |    |
| OB - Dozers on OB                                                | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 23 | 24 | 25    | 30 | 31 | 32 | 33 | 34 | 35 |    |    |    |
| ORE - Drilling                                                   | 10 | 11 | 12 | 13 | 14 | 19 | 20 | 21 | 22 | 26    | 27 | 28 |    |    |    |    |    |    |    |
| ORE - Blasting                                                   | 10 | 11 | 12 | 13 | 14 | 19 | 20 | 21 | 22 | 26    | 27 | 28 |    |    |    |    |    |    |    |
| ORE - Dozers ripping/pushing/clean-up                            | 10 | 11 | 12 | 13 | 14 | 19 | 20 | 21 | 22 | 26    | 27 | 28 |    |    |    |    |    |    |    |
| ORE - Sh/Ex/FELs loading open pit ore to trucks                  | 10 | 11 | 12 | 13 | 14 | 19 | 20 | 21 | 22 | 26    | 27 | 28 |    |    |    |    |    |    |    |
| ORE - Hauling open pit ore from Caloma 1 to ROM pad              | 11 | 12 | 14 | 15 | 16 | 36 | 37 |    |    |       |    |    |    |    |    |    |    |    |    |
| ORE - Hauling open pit ore from Wyoming 1 to ROM pad             | 16 | 17 | 18 | 19 | 21 | 22 | 36 | 37 |    |       |    |    |    |    |    |    |    |    |    |
| ORE - Hauling open pit ore from Wyoming 3 to ROM pad             | 26 | 28 | 29 | 36 | 37 |    |    |    |    |       |    |    |    |    |    |    |    |    |    |
| ORE - Unloading ROM to ROM stockpiles                            | 37 |    |    |    |    |    |    |    |    |       |    |    |    |    |    |    |    |    |    |
| ORE - FEL unloading ROM from stockpiles to ROM bin               | 37 |    |    |    |    |    |    |    |    |       |    |    |    |    |    |    |    |    |    |
| ORE - Primary Crushing                                           | 38 |    |    |    |    |    |    |    |    |       |    |    |    |    |    |    |    |    |    |
| ORE - Conveying to Screen Building                               | 39 |    |    |    |    |    |    |    |    |       |    |    |    |    |    |    |    |    |    |
| ORE - Unloading ore from conveyor to Screen Building             | 40 |    |    |    |    |    |    |    |    |       |    |    |    |    |    |    |    |    |    |
| ORE - Screening                                                  | 40 |    |    |    |    |    |    |    |    |       |    |    |    |    |    |    |    |    |    |
| ORE - Conveying oversized material to Crushing Building          | 39 |    |    |    |    |    |    |    |    |       |    |    |    |    |    |    |    |    |    |
| ORE - Unloading oversized ore from conveyor to Crushing Building | 39 |    |    |    |    |    |    |    |    |       |    |    |    |    |    |    |    |    |    |
| ORE - Secondary Crushing                                         | 40 |    |    |    |    |    |    |    |    |       |    |    |    |    |    |    |    |    |    |
| ORE - Conveying oversized material to Screen Building            | 40 |    |    |    |    |    |    |    |    |       |    |    |    |    |    |    |    |    |    |
| ORE - Conveying undersized material to Surge Bin                 | 39 |    |    |    |    |    |    |    |    |       |    |    |    |    |    |    |    |    |    |
| ORE - Unloading undersized ore from conveyor to Surge Bin        | 39 |    |    |    |    |    |    |    |    |       |    |    |    |    |    |    |    |    |    |
| ORE - Conveying undersized material from Surge Bin to ball mill  | 40 |    |    |    |    |    |    |    |    |       |    |    |    |    |    |    |    |    |    |
| ORE - Unloading undersized ore from conveyor to ball mill        | 40 |    |    |    |    |    |    |    |    |       |    |    |    |    |    |    |    |    |    |
| WE - OB dump areas                                               | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10    | 23 | 24 | 25 | 30 | 31 | 32 | 33 | 34 | 35 |
| WE - Residue Storage                                             | 41 | 42 | 43 | 44 |    |    |    |    |    |       |    |    |    |    |    |    |    |    |    |
| WE - Open pit                                                    | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 19 | 20 | 21    | 22 | 26 | 27 | 28 |    |    |    |    |    |
| WE - ROM stockpiles                                              | 37 |    |    |    |    |    |    |    |    |       |    |    |    |    |    |    |    |    |    |
| Grading roads                                                    | 7  | 15 | 16 | 17 | 18 | 19 | 29 | 36 |    |       |    |    |    |    |    |    |    |    |    |

Refer to Figure 11 for source locations.

# Table A3.3Scenario 3 – Detailed Emission Estimation

| ACTIVITY                                              | TSP emission/Scenario<br>3 in (kg/y) | Intensity  | Units    | Emission<br>factor | Units    | Variabl<br>e 1 | Units                           | Variabl<br>e 2 | Units                  | Variabl<br>e 3 | Units       | Variable<br>4 | Units  | Variable<br>5 | Units         | Variable<br>6 | Units     |
|-------------------------------------------------------|--------------------------------------|------------|----------|--------------------|----------|----------------|---------------------------------|----------------|------------------------|----------------|-------------|---------------|--------|---------------|---------------|---------------|-----------|
| OB - Drilling                                         | 66,050                               | 111,950    | holes/y  | 0.59               | kg/hole  |                |                                 |                |                        |                |             |               |        |               |               |               |           |
| OB - Blasting                                         | 15,775                               |            | blasts/y |                    | kg/blast | 1600           | Area of blast in square metres  | 100            | holes/blast            |                |             |               |        |               |               |               |           |
| OB - Excavator loading OB to haul truck               | 3,977                                | 13,509,385 | t/y      | 0.00029            | kg/t     | 0.847          | average of (wind speed/2.2)^1.3 | 4.8            | moisture content in %  |                |             |               |        |               |               |               |           |
| OB - Hauling from Caloma 1 OC to WRE 3                | 69,137                               | 6,079,223  | t/y      | 0.0114             | kg/t     | 90.9           | t/load                          | 119            | Vehicle gross mass (t) | 1.1            | km/return t | 3.76          | kg/VKT | 5             | % silt conter | 75            | % control |
| OB - Hauling from Wyoming 1 OC to WRE 1               | 4,749                                | 2,296,595  | t/y      | 0.0021             | kg/t     | 90.9           | t/load                          | 119            | Vehicle gross mass (t) | 0.2            | km/return t | 3.76          | kg/VKT | 5             | % silt conter | 75            | % control |
| OB - Hauling from Wyoming 3 OC to WRE 2               | 15,922                               | 5,133,566  | t/y      | 0.0031             | kg/t     | 90.9           | t/load                          | 119            | Vehicle gross mass (t) | 0.3            | km/return t | 3.76          | kg/VKT | 5             | % silt conter | 75            | % control |
| OB- Emplacing at WRE 3                                | 1,790                                | 6,079,223  | t/y      | 0.00029            | kg/t     | 0.847          | average of (wind speed/2.2)^1.3 | 4.8            | moisture content in %  |                |             |               |        |               |               |               |           |
| OB- Emplacing at WRE 1                                | 676                                  | 2,296,595  | t/y      | 0.00029            | kg/t     | 0.847          | average of (wind speed/2.2)^1.3 | 4.8            | moisture content in %  |                |             |               |        |               |               |               |           |
| OB- Emplacing at WRE 2                                | 1,511                                | 5,133,566  | t/y      | 0.00029            | kg/t     | 0.847          | average of (wind speed/2.2)^1.3 | 4.8            | moisture content in %  |                |             |               |        |               |               |               |           |
| OB - Dozers on OB                                     | 36,640                               | 6,833      | h/y      | 5.362              | kg/h     | 10             | silt content in %               | 4.8            | moisture content in %  |                |             |               |        |               |               |               |           |
| ORE - Drilling                                        | 928                                  | 9,281      | holes/y  | 0.1                | kg/hole  |                |                                 |                |                        |                |             |               |        |               |               |               |           |
| ORE - Blasting                                        | 589                                  |            | blasts/y |                    | kg/blast |                | Area of blast in square metres  |                | holes/blast            |                |             |               |        |               |               |               |           |
| ORE - Dozers ripping/pushing/clean-up                 | 109,963                              | 1,752      |          | 62.7642            |          |                | silt content in %               | 4.8            | moisture content in %  |                |             |               |        |               |               |               |           |
| ORE - Sh/Ex/FELs loading open pit ore to trucks       | 106,550                              | 1,206,742  |          | 0.08830            |          |                | moisture content in %           |                |                        |                |             |               |        |               |               |               |           |
| ORE - Hauling open pit ore from Caloma 1 to ROM pad   | 12,352                               | 543,034    |          | 0.0227             |          |                | t/load                          |                | Vehicle gross mass (t) |                | km/return t |               | kg/VKT | 5             | % silt conter |               | % control |
| ORE - Hauling open pit ore from Wyoming 1 to ROM pad  | 6,575                                | 205,146    |          | 0.0321             |          |                | t/load                          |                | Vehicle gross mass (t) | 3.1            | km/return t |               | kg/VKT | 5             | % silt conter |               | % control |
| ORE - Hauling open pit ore from Wyoming 3 to ROM pad  | 5,689                                | 458,562    | t/y      | 0.0124             | kg/t     | 90.9           | t/load                          | 119            | Vehicle gross mass (t) | 1.2            | km/return t | 3.76          | kg/VKT | 5             | % silt conter | 75            | % control |
| ORE - Unloading ROM to ROM stockpiles                 | 355                                  | 1,206,742  | t/y      | 0.00029            | kg/t     | 0.847          | average of (wind speed/2.2)^1.3 | 4.8            | moisture content in %  |                |             |               |        |               |               |               |           |
| ORE - FEL unloading ROM from stockpiles to ROM bin    | 355                                  | 1,206,742  | t/y      | 0.00029            | kg/t     | 0.847          | average of (wind speed/2.2)^1.3 | 4.8            | moisture content in %  |                |             |               |        |               |               |               |           |
| ORE - Primary Crushing                                | 24,135                               | 1,206,742  | t/y      | 0.2                | kg/t     |                |                                 |                |                        | 0.1            | %control    |               |        |               |               |               |           |
| ORE - Conveying to Screen Building                    | 46                                   | 0.0132     | ha       | 0.4                | kg/ha/h  | 8760           | h/y                             |                |                        |                |             |               |        |               |               |               |           |
| ORE - Unloading ore from conveyor to Screen Building  | 355                                  | 1,206,742  | t/y      | 0.0003             | kg/t     | 0.847          | average of (wind speed/2.2)^1.3 | 4.8            | moisture content in %  | 0.3            | %control    |               |        |               |               |               |           |
| ORE - Screening                                       | 1,508                                | 1,206,742  | t/y      | 0.0125             | kg/t     |                |                                 |                |                        | 0.1            | %control    |               |        |               |               |               |           |
| ORE - Conveying oversized material to Crushing        | 46                                   | 0.0132     | ha       | 0.4                | kg/ha/h  | 8760           | h/y                             |                |                        |                |             |               |        |               |               |               |           |
| ORE - Unloading oversized ore from conveyor to        | 101                                  | 1,146,405  | t/y      | 0.0003             | kg/t     | 0.847          | average of (wind speed/2.2)^1.3 | 4.8            | moisture content in %  | 0.3            | %control    |               |        |               |               |               |           |
| ORE - Secondary Crushing                              | 68,784                               | 1,146,405  | t/y      | 0.6                | kg/t     |                |                                 |                |                        | 0.1            | %control    |               |        |               |               |               |           |
| ORE - Conveying oversized material to Screen Building | 46                                   | 0.0132     | ha       | 0.4                | kg/ha/h  | 8760           | h/y                             |                |                        |                |             |               |        |               |               |               |           |
| ORE - Conveying undersized material to Surge Bin      | 27                                   | 0.0078     | ha       | 0.4                | kg/ha/h  | 8760           | h/y                             |                |                        |                |             |               |        |               |               |               |           |
| ORE - Unloading undersized ore from conveyor to       | 5                                    | 60,337     | t/y      | 0.0003             | kq/t     | 0.847          | average of (wind speed/2.2)^1.3 | 4.8            | moisture content in %  | 0.3            | %control    |               |        |               |               |               |           |
| ORE - Conveying undersized material from Surge Bin to | 44                                   | 0.0125     | ha       | 0.4                | kg/ha/h  | 8760           | h/y                             |                |                        |                |             |               |        |               |               |               |           |
| ORE - Unloading undersized ore from conveyor to ball  | 18                                   | 60,337     | t/y      | 0.0003             | kg/t     | 0.847          | average of (wind speed/2.2)^1.3 | 4.8            | moisture content in %  | 0.1            | %control    |               |        |               |               |               |           |
| REHAB - Dozers on rehab                               | 3,861                                | 720        | h/y      | 5.362              | kg/h     | 10             | silt content in %               | 4.8            | moisture content in %  |                |             | 1             |        |               |               |               |           |
| WE - OB dump areas                                    | 223,730                              | 128        |          |                    | kg/ha/h  | 8760           |                                 |                |                        | 0.5            | %control    |               |        |               |               |               |           |
| WE - Residue Storage                                  | 51,824                               | 49         |          |                    | kg/ha/h  | 8760           |                                 |                |                        | 0.3            | %control    |               |        |               |               |               |           |
| WE - Open pit                                         | 198,677                              | 57         | ha       | 0.4                | kg/ha/h  | 8760           |                                 |                |                        |                |             |               |        |               |               |               |           |
| WE - ROM stockpiles                                   | 1,402                                |            | ha       |                    | kg/ha/h  | 8760           |                                 |                |                        | 0.5            | %control    |               |        |               |               |               |           |
| Grading roads                                         | 86,264                               | 140,160    | km       | 0.6155             | kg/VKT   | 8              | speed of graders in km/h        |                |                        |                |             |               |        |               |               |               |           |

| Table A3.4                     |  |
|--------------------------------|--|
| Scenario 3 - Source allocation |  |

| ACTIVITY                                                         |    |    |    |    |    |    | Sour | ce ID |    |    |    |    |    |    |
|------------------------------------------------------------------|----|----|----|----|----|----|------|-------|----|----|----|----|----|----|
| OB - Drilling                                                    | 10 | 11 | 12 | 13 | 14 | 19 | 20   | 21    | 22 | 26 | 27 | 28 |    |    |
| OB - Blasting                                                    | 10 | 11 | 12 | 13 | 14 | 19 | 20   | 21    | 22 | 26 | 27 | 28 |    |    |
| OB - Excavator loading OB to haul truck                          | 10 | 11 | 12 | 13 | 14 | 19 | 20   | 21    | 22 | 26 | 27 | 28 |    |    |
| OB - Hauling from Caloma 1 OC to WRE 3                           | 6  | 7  | 10 | 12 | 13 | 14 |      |       |    |    |    |    |    |    |
| OB - Hauling from Wyoming 1 OC to WRE 1                          | 18 | 19 | 21 | 22 | 23 | 24 | 25   |       |    |    |    |    |    |    |
| OB - Hauling from Wyoming 3 OC to WRE 2                          | 26 | 27 | 28 | 30 | 32 | 34 |      |       |    |    |    |    |    |    |
| OB- Emplacing at WRE 3                                           | 3  | 4  | 5  | 6  | 7  |    |      |       |    |    |    |    |    |    |
| OB- Emplacing at WRE 1                                           | 23 | 24 | 25 |    |    |    |      |       |    |    |    |    |    |    |
| OB- Emplacing at WRE 2                                           | 30 | 31 | 32 | 33 | 34 | 35 |      |       |    |    |    |    |    |    |
| OB - Dozers on OB                                                | 3  | 4  | 5  | 6  | 7  | 23 | 24   | 25    | 30 | 31 | 32 | 33 | 34 | 35 |
| ORE - Drilling                                                   | 10 | 11 | 12 | 13 | 14 | 19 | 20   | 21    | 22 | 26 | 27 | 28 |    |    |
| ORE - Blasting                                                   | 10 | 11 | 12 | 13 | 14 | 19 | 20   | 21    | 22 | 26 | 27 | 28 |    |    |
| ORE - Dozers ripping/pushing/clean-up                            | 10 | 11 | 12 | 13 | 14 | 19 | 20   | 21    | 22 | 26 | 27 | 28 |    |    |
| ORE - Sh/Ex/FELs loading open pit ore to trucks                  | 10 | 11 | 12 | 13 | 14 | 19 | 20   | 21    | 22 | 26 | 27 | 28 |    |    |
| ORE - Hauling open pit ore from Caloma 1 to ROM pad              | 11 | 12 | 13 | 14 | 15 | 16 | 36   | 37    |    |    |    |    |    |    |
| ORE - Hauling open pit ore from Wyoming 1 to ROM pad             | 16 | 17 | 18 | 19 | 21 | 22 | 36   | 37    |    |    |    |    |    |    |
| ORE - Hauling open pit ore from Wyoming 3 to ROM pad             | 26 | 28 | 29 | 36 | 37 |    |      |       |    |    |    |    |    |    |
| ORE - Unloading ROM to ROM stockpiles                            | 37 |    |    |    |    |    |      |       |    |    |    |    |    |    |
| ORE - FEL unloading ROM from stockpiles to ROM bin               | 37 |    |    |    |    |    |      |       |    |    |    |    |    |    |
| ORE - Primary Crushing                                           | 38 |    |    |    |    |    |      |       |    |    |    |    |    |    |
| ORE - Conveying to Screen Building                               | 39 |    |    |    |    |    |      |       |    |    |    |    |    |    |
| ORE - Unloading ore from conveyor to Screen Building             | 40 |    |    |    |    |    |      |       |    |    |    |    |    |    |
| ORE - Screening                                                  | 40 |    |    |    |    |    |      |       |    |    |    |    |    |    |
| ORE - Conveying oversized material to Crushing Building          | 39 |    |    |    |    |    |      |       |    |    |    |    |    |    |
| ORE - Unloading oversized ore from conveyor to Crushing Building | 39 |    |    |    |    |    |      |       |    |    |    |    |    |    |
| ORE - Secondary Crushing                                         | 40 |    |    |    |    |    |      |       |    |    |    |    |    |    |
| ORE - Conveying oversized material to Screen Building            | 40 |    |    |    |    |    |      |       |    |    |    |    |    |    |
| ORE - Conveying undersized material to Surge Bin                 | 39 |    |    |    |    |    |      |       |    |    |    |    |    |    |
| ORE - Unloading undersized ore from conveyor to Surge Bin        | 39 |    |    |    |    |    |      |       |    |    |    |    |    |    |
| ORE - Conveying undersized material from Surge Bin to ball mill  | 40 |    |    |    |    |    |      |       |    |    |    |    |    |    |
| ORE - Unloading undersized ore from conveyor to ball mill        | 40 |    |    |    |    |    |      |       |    |    |    |    |    |    |
| REHAB - Dozers on rehab                                          | 1  | 2  |    |    |    |    |      |       |    |    |    |    |    |    |
| WE - OB dump areas                                               | 3  | 4  | 5  | 6  | 7  | 23 | 24   | 25    | 30 | 31 | 32 | 33 | 34 | 35 |
| WE - Residue Storage                                             | 41 | 42 | 43 | 44 |    |    |      |       |    |    |    |    |    |    |
| WE - Open pit                                                    | 8  | 9  | 10 | 11 | 12 | 13 | 14   | 19    | 20 | 21 | 22 | 26 | 27 | 28 |
| WE - ROM stockpiles                                              | 37 |    |    |    |    |    |      |       |    |    |    |    |    |    |
| Grading roads                                                    | 7  | 15 | 16 | 17 | 18 | 19 | 29   | 36    |    |    |    |    |    |    |

Refer to Figure 12 for source locations.

# Table A3.5 Scenario 4 – Detailed Emission Estimation

| ACTIVITY                                              | TSP emission/Scenario<br>4 in (kg/y) | Intensity | Units    | Emission<br>factor | Units    | Variabl<br>e 1 | Units                           | Variabl<br>e 2 | Units                  | Variabl<br>e 3 | Units       | Variable<br>4 | Units  | Variable<br>5 | Units         | Variable<br>6 | Units     |
|-------------------------------------------------------|--------------------------------------|-----------|----------|--------------------|----------|----------------|---------------------------------|----------------|------------------------|----------------|-------------|---------------|--------|---------------|---------------|---------------|-----------|
| OB - Drilling                                         | 15,138                               | 25,657    | holes/y  | 0.59               | kg/hole  |                |                                 |                |                        |                |             |               |        |               |               |               |           |
| OB - Blasting                                         | 3,613                                | 257       | blasts/y | 14                 | kg/blast | 1600           | Area of blast in square metres  | 100            | holes/blast            |                |             |               |        |               |               |               |           |
| OB - Excavator loading OB to haul truck               | 1,088                                | 3,694,680 | t/y      | 0.00029            | kg/t     | 0.847          | average of (wind speed/2.2)^1.3 |                | moisture content in %  |                |             |               |        |               |               |               |           |
| OB - Hauling from Caloma 2 OC to WRE 3                | 21,773                               | 1,108,404 | t/y      | 0.0196             | kg/t     | 90.9           | t/load                          | 119            | Vehicle gross mass (t) | 1.9            | km/return t | 3.76          | kg/VKT | 5             | % silt conter |               | % control |
| OB - Hauling from Wyoming 1 OC to WRE 1               | 5,348                                | 2,586,276 |          | 0.0021             |          |                | t/load                          | 119            | Vehicle gross mass (t) | 0.2            | km/return t | 3.76          | kg/VKT | 5             | % silt conter | 75            | % control |
| OB- Emplacing at WRE 3                                | 326                                  | 1,108,404 | t/y      | 0.00029            | kg/t     | 0.847          | average of (wind speed/2.2)^1.3 | 4.8            | moisture content in %  |                |             |               |        |               |               |               |           |
| OB- Emplacing at WRE 1                                | 761                                  | 2,586,276 | t/y      | 0.00029            | kg/t     | 0.847          | average of (wind speed/2.2)^1.3 | 4.8            | moisture content in %  |                |             |               |        |               |               |               |           |
| OB - Dozers on OB                                     | 36,640                               | 6,833     | h/y      | 5.362              |          | 10             | silt content in %               | 4.8            | moisture content in %  |                |             |               |        |               |               |               |           |
| ORE - Drilling                                        | 2,114                                |           | holes/y  |                    | kg/hole  |                |                                 |                |                        |                |             |               |        |               |               |               |           |
| ORE - Blasting                                        | 2,989                                |           | blasts/y |                    | kg/blast |                | Area of blast in square metres  |                | holes/blast            |                |             |               |        |               |               |               |           |
| ORE - Dozers ripping/pushing/clean-up                 | 109,963                              | 1,752     |          | 62.7642            |          |                | silt content in %               | 4.8            | moisture content in %  |                |             |               |        |               |               |               |           |
| ORE - Sh/Ex/FELs loading open pit ore to trucks       | 118,303                              | 1,339,849 |          | 0.08830            |          |                | moisture content in %           |                |                        |                |             |               |        |               |               |               |           |
| ORE - Hauling open pit ore from Caloma 2 to ROM pad   | 13,298                               | 401,955   |          | 0.0331             |          |                | t/load                          |                | Vehicle gross mass (t) |                | km/return t |               | kg/VKT |               | % silt conter |               | % control |
| ORE - Hauling open pit ore from Wyoming 1 to ROM pad  | 30,060                               | 937,894   |          | 0.0321             |          |                | t/load                          |                | Vehicle gross mass (t) | 3.1            | km/return t | 3.76          | kg/VKT | 5             | % silt conter | 75            | % control |
| ORE - Unloading ROM to ROM stockpiles                 | 394                                  | 1,339,849 |          | 0.00029            |          |                | average of (wind speed/2.2)^1.3 |                | moisture content in %  |                |             |               |        |               |               |               |           |
| ORE - FEL unloading ROM from stockpiles to ROM bin    | 394                                  | 1,339,849 |          | 0.00029            |          | 0.847          | average of (wind speed/2.2)^1.3 | 4.8            | moisture content in %  |                |             |               |        |               |               |               |           |
| ORE - Primary Crushing                                | 26,797                               | 1,339,849 |          | 0.2                |          |                |                                 |                |                        | 0.1            | %control    |               |        |               |               |               |           |
| ORE - Conveying to Screen Building                    | 46                                   | 0.0132    |          |                    | kg/ha/h  | 8760           |                                 |                |                        |                |             |               |        |               |               |               |           |
| ORE - Unloading ore from conveyor to Screen Building  | 394                                  | 1,339,849 |          | 0.0003             |          | 0.847          | average of (wind speed/2.2)^1.3 | 4.8            | moisture content in %  |                | %control    |               |        |               |               |               |           |
| ORE - Screening                                       | 1,675                                | 1,339,849 |          | 0.0125             |          |                |                                 |                |                        | 0.1            | %control    |               |        |               |               |               |           |
| ORE - Conveying oversized material to Crushing        | 46                                   | 0.0132    |          |                    | kg/ha/h  | 8760           |                                 |                |                        |                |             |               |        |               |               |               |           |
| ORE - Unloading oversized ore from conveyor to        | 112                                  | 1,272,857 | t/y      | 0.0003             | kg/t     | 0.847          | average of (wind speed/2.2)^1.3 | 4.8            | moisture content in %  | 0.3            | %control    |               |        |               |               |               |           |
| ORE - Secondary Crushing                              | 76,371                               | 1,272,857 | t/y      | 0.6                | kg/t     |                |                                 |                |                        | 0.1            | %control    |               |        |               |               |               |           |
| ORE - Conveying oversized material to Screen Building | 46                                   | 0.0132    | ha       | 0.4                | kg/ha/h  | 8760           | h/y                             |                |                        |                |             |               |        |               |               |               |           |
| ORE - Conveying undersized material to Surge Bin      | 27                                   | 0.0078    | ha       | 0.4                | kg/ha/h  | 8760           | h/y                             |                |                        |                |             |               |        |               |               |               |           |
| ORE - Unloading undersized ore from conveyor to       | 6                                    | 66,992    | t/y      | 0.0003             | kg/t     | 0.847          | average of (wind speed/2.2)^1.3 | 4.8            | moisture content in %  | 0.3            | %control    |               |        |               |               |               |           |
| ORE - Conveying undersized material from Surge Bin to | 44                                   | 0.0125    | ha       | 0.4                | kg/ha/h  | 8760           | h/y                             |                |                        |                |             |               |        |               |               |               |           |
| ORE - Unloading undersized ore from conveyor to ball  | 20                                   | 66,992    | t/y      | 0.0003             | kg/t     | 0.847          | average of (wind speed/2.2)^1.3 | 4.8            | moisture content in %  | 0.1            | %control    |               |        |               |               |               |           |
| REHAB - Dozers on rehab                               | 3,861                                | 720       | h/y      | 5.362              | kg/h     |                | silt content in %               | 4.8            | moisture content in %  |                |             | 1             |        |               |               |               |           |
| WE - OB dump areas                                    | 223,730                              | 128       |          |                    | kg/ha/h  | 8760           |                                 |                |                        |                | %control    |               |        |               |               |               |           |
| WE - Residue Storage                                  | 51,824                               | 49        |          |                    | kg/ha/h  | 8760           |                                 |                |                        | 0.3            | %control    |               |        |               |               |               |           |
| WE - Open pit                                         | 198,677                              | 57        |          |                    | kg/ha/h  | 8760           |                                 |                |                        |                |             |               |        |               |               | -             |           |
| WE - ROM stockpiles                                   | 1,402                                |           | ha       |                    | kg/ha/h  | 8760           |                                 |                |                        | 0.5            | %control    |               |        |               |               |               |           |
| Grading roads                                         | 86,264                               | 140,160   | km       | 0.6155             | kg/VKT   | 8              | speed of graders in km/h        |                |                        |                |             |               |        |               |               |               |           |

# Table A3.6Scenario 4 - Source allocation

| ACTIVITY                                                         |    |    |    |    |    |    | Sour | ce ID |    |    |    |    |    |    |
|------------------------------------------------------------------|----|----|----|----|----|----|------|-------|----|----|----|----|----|----|
| OB - Drilling                                                    | 11 | 12 | 20 | 21 | 22 | 23 | 24   | 25    |    |    |    |    |    | 1  |
| OB - Blasting                                                    | 11 | 12 | 20 | 21 | 22 | 23 | 24   | 25    |    |    |    |    |    | 1  |
| OB - Excavator loading OB to haul truck                          | 11 | 12 | 20 | 21 | 22 | 23 | 24   | 25    |    |    |    |    |    | 1  |
| OB - Hauling from Caloma 2 OC to WRE 3                           | 8  | 9  | 10 | 11 | 12 |    |      |       |    |    |    |    |    | 1  |
| OB - Hauling from Wyoming 1 OC to WRE 1                          | 21 | 22 | 24 | 25 | 26 | 27 | 28   |       |    |    |    |    |    | 1  |
| OB- Emplacing at WRE 3                                           | 8  | 9  |    |    |    |    |      |       |    |    |    |    |    | 1  |
| OB- Emplacing at WRE 1                                           | 26 | 27 | 28 |    |    |    |      |       |    |    |    |    |    | 1  |
| OB - Dozers on OB                                                | 8  | 9  | 26 | 27 | 28 |    |      |       |    |    |    |    |    | 1  |
| ORE - Drilling                                                   | 11 | 12 | 20 | 21 | 22 | 23 | 24   | 25    |    |    |    |    |    | 1  |
| ORE - Blasting                                                   | 11 | 12 | 20 | 21 | 22 | 23 | 24   | 25    |    |    |    |    |    | 1  |
| ORE - Dozers ripping/pushing/clean-up                            | 11 | 12 | 20 | 21 | 22 | 23 | 24   | 25    |    |    |    |    |    | 1  |
| ORE - Sh/Ex/FELs loading open pit ore to trucks                  | 11 | 12 | 20 | 21 | 22 | 23 | 24   | 25    |    |    |    |    |    | 1  |
| ORE - Hauling open pit ore from Caloma 2 to ROM pad              | 11 | 12 | 13 | 14 | 18 | 19 | 39   | 40    |    |    |    |    |    | 1  |
| ORE - Hauling open pit ore from Wyoming 1 to ROM pad             | 21 | 22 | 24 | 25 | 26 | 27 | 28   | 39    | 40 |    |    |    |    | 1  |
| ORE - Unloading ROM to ROM stockpiles                            | 40 |    |    |    |    |    |      |       |    |    |    |    |    | Ī  |
| ORE - FEL unloading ROM from stockpiles to ROM bin               | 40 |    |    |    |    |    |      |       |    |    |    |    |    | 1  |
| ORE - Primary Crushing                                           | 41 |    |    |    |    |    |      |       |    |    |    |    |    | 1  |
| ORE - Conveying to Screen Building                               | 42 |    |    |    |    |    |      |       |    |    |    |    |    | 1  |
| ORE - Unloading ore from conveyor to Screen Building             | 43 |    |    |    |    |    |      |       |    |    |    |    |    | 1  |
| ORE - Screening                                                  | 43 |    |    |    |    |    |      |       |    |    |    |    |    | 1  |
| ORE - Conveying oversized material to Crushing Building          | 42 |    |    |    |    |    |      |       |    |    |    |    |    | 1  |
| ORE - Unloading oversized ore from conveyor to Crushing Building | 42 |    |    |    |    |    |      |       |    |    |    |    |    | Ì  |
| ORE - Secondary Crushing                                         | 43 |    |    |    |    |    |      |       |    |    |    |    |    | 1  |
| ORE - Conveying oversized material to Screen Building            | 43 |    |    |    |    |    |      |       |    |    |    |    |    | l  |
| ORE - Conveying undersized material to Surge Bin                 | 42 |    |    |    |    |    |      |       |    |    |    |    |    | l  |
| ORE - Unloading undersized ore from conveyor to Surge Bin        | 42 |    |    |    |    |    |      |       |    |    |    |    |    | l  |
| ORE - Conveying undersized material from Surge Bin to ball mill  | 43 |    |    |    |    |    |      |       |    |    |    |    |    | l  |
| ORE - Unloading undersized ore from conveyor to ball mill        | 43 |    |    |    |    |    |      |       |    |    |    |    |    | 1  |
| REHAB - Dozers on rehab                                          | 1  | 2  | 3  | 4  | 5  | 6  | 7    | 33    | 34 | 35 | 36 | 37 | 38 | 1  |
| WE - OB dump areas                                               | 8  | 9  | 26 | 27 | 28 |    |      |       |    |    |    |    |    |    |
| WE - Residue Storage                                             | 44 | 45 | 46 | 47 |    |    |      |       |    |    |    |    |    |    |
| WE - Open pit                                                    | 11 | 12 | 13 | 14 | 15 | 16 | 17   | 22    | 23 | 24 | 25 | 29 | 30 | 31 |
| WE - ROM stockpiles                                              | 40 |    |    |    |    |    |      |       |    |    |    |    |    | 1  |
| Grading roads                                                    | 10 | 18 | 19 | 20 | 21 | 22 | 32   | 39    |    |    |    |    |    | 1  |

Refer to Figure 13 for source locations.

This page has intentionally been left blank

# Appendix 4

6 - 113

# **Example ISCMOD Input File**

(No. of pages including blank pages = 16)

(A copy of this Appendix is available on the Project CD)

This page has intentionally been left blank

#### **SPECIALIST CONSULTANT STUDIES** *Part 6: Air Quality Assessment*

6 - 115

| * * | ISCST3 r             | nodel inpu         | ut runsti        | ream : Du        | ıst                    |                |
|-----|----------------------|--------------------|------------------|------------------|------------------------|----------------|
| CO  | STARTING             |                    |                  |                  |                        |                |
|     | TITLEONE             | ISCST3 Du          | ust Model        | l Run            |                        |                |
|     |                      | RURAL CON          |                  | DRYDPLT H        | HE>ZI                  |                |
|     |                      | 24 PERIO           | D                |                  |                        |                |
|     | POLLUTID<br>EBBOREIL | C:\Jobs\3          | 33632\TSC        | -\Scenar         | io2\erro               |                |
|     | TERRHGTS             |                    | JJ0JA (150       | , scenar.        | 102 (6110)             | - • ± 0 9      |
|     | RUNORNOT             |                    |                  |                  |                        |                |
| СО  | FINISHED             |                    |                  |                  |                        |                |
|     |                      |                    |                  |                  |                        |                |
| SO  | STARTING             |                    |                  |                  |                        |                |
|     | LOCATION             | POINT1             | VOLUME           |                  | 5394612 2              |                |
|     | LOCATION             | POINT2             | VOLUME           |                  |                        | 276.1          |
|     | LOCATION<br>LOCATION | POINT3<br>POINT4   | VOLUME<br>VOLUME |                  | 5393561 2<br>5394260 2 | 276.5          |
|     | LOCATION             | POINT4<br>POINT5   | VOLUME           |                  | 5394200 2<br>5393382 2 |                |
|     | LOCATION             | POINT6             | VOLUME           |                  |                        | 275.0          |
|     | LOCATION             | POINT7             | VOLUME           |                  | 5393818 2              |                |
|     | LOCATION             | POINT8             | VOLUME           | 614896 (         | 5393678 2              | 271.2          |
|     | LOCATION             | POINT9             | VOLUME           | 614647 (         | 5393684 2              | 269.4          |
|     | LOCATION             | POINT10            | VOLUME           | 614840           |                        |                |
|     | LOCATION             | POINT11            | VOLUME           | 614642           | 6393958                |                |
|     | LOCATION             | POINT12            | VOLUME           | 614847           | 6394048                | 271.2          |
|     | LOCATION             | POINT13            | VOLUME           | 614738           | 6394253                |                |
|     | LOCATION<br>LOCATION | POINT14<br>POINT15 | VOLUME<br>VOLUME | 614988<br>614328 | 6394298<br>6393997     | 271.9<br>269.4 |
|     | LOCATION             | POINT16            | VOLUME           | 614052           | 6393997                |                |
|     | LOCATION             | POINT17            | VOLUME           | 613950           | 6393741                |                |
|     | LOCATION             | POINT18            | VOLUME           | 613841           | 6393427                | 267.0          |
|     | LOCATION             | POINT19            | VOLUME           | 614052           | 6393093                | 266.7          |
|     | LOCATION             | POINT20            | VOLUME           | 613950           | 6393407                | 267.1          |
|     | LOCATION             | POINT21            | VOLUME           | 614193           | 6393478                | 268.4          |
|     | LOCATION             | POINT22            | VOLUME           | 614187           | 6393254                | 267.4          |
|     | LOCATION             | POINT23            | VOLUME           | 613713           | 6393561                |                |
|     | LOCATION<br>LOCATION | POINT24<br>POINT25 | VOLUME<br>VOLUME | 613790<br>613828 | 6393760<br>6393965     | 266.1<br>269.0 |
|     | LOCATION             | POINT26            | VOLUME           | 614264           | 6394112                |                |
|     | LOCATION             | POINT27            | VOLUME           | 614071           | 6394125                | 269.6          |
|     | LOCATION             | POINT28            | VOLUME           | 614116           | 6394317                |                |
|     | LOCATION             | POINT29            | VOLUME           | 613937           | 6394157                | 268.7          |
|     | LOCATION             | POINT30            | VOLUME           | 614328           | 6394458                | 271.2          |
|     | LOCATION             | POINT31            | VOLUME           | 614385           | 6394708                |                |
|     | LOCATION             | POINT32            | VOLUME           | 614007           | 6394747                | 272.0          |
|     | LOCATION<br>LOCATION | POINT33<br>POINT34 | VOLUME           | 613546<br>613559 | 6394727                |                |
|     | LOCATION             | POINT34<br>POINT35 | VOLUME<br>VOLUME | 613860           | 6394554<br>6394510     |                |
|     | LOCATION             | POINT36            | VOLUME           | 613706           | 6394112                |                |
|     | LOCATION             | POINT37            | VOLUME           | 613617           | 6394144                |                |
|     | LOCATION             | POINT38            | VOLUME           | 613533           | 6394176                | 269.0          |
|     | LOCATION             | POINT39            | VOLUME           | 613456           | 6394221                | 268.6          |
|     | LOCATION             | POINT40            | VOLUME           | 613328           | 6394228                |                |
|     | LOCATION             | POINT41            | VOLUME           | 613463           | 6393914                |                |
|     | LOCATION             | POINT42            | VOLUME           | 613431           | 6393651                |                |
|     | LOCATION<br>LOCATION | POINT43<br>POINT44 | VOLUME           | 612950           | 6393747                |                |
|     | LOCATION             | POINT44<br>POINT45 | VOLUME<br>VOLUME | 613002<br>615628 | 6394016<br>6394612     |                |
|     | LOCATION             | POINT46            | VOLUME           | 615590           | 6394151                |                |
|     | LOCATION             | POINT47            | VOLUME           | 615558           | 6393561                |                |
|     | LOCATION             | POINT48            | VOLUME           | 615237           | 6394260                |                |
|     | LOCATION             | POINT49            | VOLUME           | 615314           | 6393382                | 274.9          |
|     | LOCATION             | POINT50            | VOLUME           | 615327           | 6393850                |                |
|     | LOCATION             | POINT51            | VOLUME           | 615103           | 6393818                | 273.0          |
|     | LOCATION             | POINT52            | VOLUME           | 614896           | 6393678                |                |
|     | LOCATION             | POINT53            | VOLUME           | 614647           | 6393684                |                |
|     | LOCATION             | POINT54            | VOLUME           | 614840           | 6393850                | 271.0          |
|     | LOCATION<br>LOCATION | POINT55<br>POINT56 | VOLUME<br>VOLUME | 614642<br>614847 | 6393958<br>6394048     |                |
|     | LOCATION             | POINT50<br>POINT57 | VOLUME           | 614738           | 6394048                |                |
|     |                      | /                  |                  |                  |                        |                |

PAEHolmes

| -                    |                      |                  |                  |                                |
|----------------------|----------------------|------------------|------------------|--------------------------------|
| LOCATION             | POINT58              | VOLUME           | 614988           | 6394298 271.9                  |
| LOCATION             | POINT59              | VOLUME           | 614328           | 6393997 269.4                  |
| LOCATION             | POINT60              | VOLUME           | 614052           | 6393997 269.9                  |
| LOCATION             | POINT61              | VOLUME           | 613950           | 6393741 268.6                  |
| LOCATION             | POINT62              | VOLUME           | 613841           | 6393427 267.0                  |
| LOCATION             | POINT63              | VOLUME           | 614052           | 6393093 266.7                  |
| LOCATION             | POINT64              | VOLUME           | 613950           | 6393407 267.1                  |
| LOCATION             | POINT65              | VOLUME           | 614193           | 6393478 268.4                  |
| LOCATION             | POINT66              | VOLUME           | 614187           | 6393254 267.4                  |
| LOCATION             | POINT67              | VOLUME           | 613713           | 6393561 268.4                  |
| LOCATION             | POINT68              | VOLUME           | 613790           | 6393760 266.1                  |
| LOCATION             | POINT69<br>POINT70   | VOLUME           | 613828<br>614264 | 6393965 269.0<br>6394112 269.1 |
| LOCATION<br>LOCATION | POINT70<br>POINT71   | VOLUME<br>VOLUME | 614204           | 6394125 269.6                  |
| LOCATION             | POINT72              | VOLUME           | 614116           | 6394317 271.3                  |
| LOCATION             | POINT73              | VOLUME           | 613937           | 6394157 268.7                  |
| LOCATION             | POINT74              | VOLUME           | 614328           | 6394458 271.2                  |
| LOCATION             | POINT75              | VOLUME           | 614385           | 6394708 272.9                  |
| LOCATION             | POINT76              | VOLUME           | 614007           | 6394747 272.0                  |
| LOCATION             | POINT77              | VOLUME           | 613546           | 6394727 270.0                  |
| LOCATION             | POINT78              | VOLUME           | 613559           | 6394554 270.0                  |
| LOCATION             | POINT79              | VOLUME           | 613860           | 6394510 271.0                  |
| LOCATION             | POINT80              | VOLUME           | 613706           | 6394112 269.1                  |
| LOCATION             | POINT81              | VOLUME           | 613617           | 6394144 269.3                  |
| LOCATION             | POINT82              | VOLUME           | 613533           | 6394176 269.0                  |
| LOCATION             | POINT83              | VOLUME           | 613456           | 6394221 268.6                  |
| LOCATION             | POINT84              | VOLUME           | 613328           | 6394228 268.6                  |
| LOCATION             | POINT85              | VOLUME           | 613463           | 6393914 267.7                  |
| LOCATION             | POINT86              | VOLUME           | 613431           | 6393651 266.7                  |
| LOCATION<br>LOCATION | POINT87<br>POINT88   | VOLUME<br>VOLUME | 612950<br>613002 | 6393747 268.0<br>6394016 266.8 |
| LOCATION             | POINT89              | VOLUME           | 615628           | 6394612 276.2                  |
| LOCATION             | POINT90              | VOLUME           | 615590           | 6394151 276.1                  |
| LOCATION             | POINT91              | VOLUME           | 615558           | 6393561 276.5                  |
| LOCATION             | POINT92              | VOLUME           | 615237           | 6394260 273.6                  |
| LOCATION             | POINT93              | VOLUME           | 615314           | 6393382 274.9                  |
| LOCATION             | POINT94              | VOLUME           | 615327           | 6393850 275.0                  |
| LOCATION             | POINT95              | VOLUME           | 615103           | 6393818 273.0                  |
| LOCATION             | POINT96              | VOLUME           | 614896           | 6393678 271.2                  |
| LOCATION             | POINT97              | VOLUME           | 614647           | 6393684 269.4                  |
| LOCATION             | POINT98              | VOLUME           | 614840           | 6393850 271.0                  |
| LOCATION             | POINT99              | VOLUME           | 614642           | 6393958 270.1                  |
| LOCATION             | POINT100             | VOLUME           | 614847           |                                |
| LOCATION             | POINT101             | VOLUME           | 614738           |                                |
| LOCATION<br>LOCATION | POINT102<br>POINT103 | VOLUME<br>VOLUME | 614988<br>614328 |                                |
| LOCATION             | POINT103             | VOLUME           | 614052           |                                |
| LOCATION             | POINT105             | VOLUME           | 613950           |                                |
| LOCATION             | POINT106             | VOLUME           | 613841           |                                |
| LOCATION             | POINT107             | VOLUME           | 614052           |                                |
| LOCATION             | POINT108             | VOLUME           | 613950           |                                |
| LOCATION             | POINT109             | VOLUME           | 614193           | 3 6393478 268.4                |
| LOCATION             | POINT110             | VOLUME           | 614187           | 6393254 267.4                  |
| LOCATION             | POINT111             | VOLUME           | 613713           | 8 6393561 268.4                |
| LOCATION             | POINT112             | VOLUME           | 613790           |                                |
| LOCATION             | POINT113             | VOLUME           | 613828           |                                |
| LOCATION             | POINT114             | VOLUME           | 614264           |                                |
| LOCATION             | POINT115             | VOLUME           | 614071           |                                |
| LOCATION             | POINT116             | VOLUME           | 614116           |                                |
| LOCATION             | POINT117             | VOLUME           | 613937           |                                |
| LOCATION             | POINT118             | VOLUME<br>VOLUME | 614328<br>614385 |                                |
| LOCATION<br>LOCATION | POINT119<br>POINT120 | VOLUME<br>VOLUME | 614383           |                                |
| LOCATION             | POINT120<br>POINT121 | VOLUME           | 613546           |                                |
| LOCATION             | POINT122             | VOLUME           | 613559           |                                |
| LOCATION             | POINT123             | VOLUME           | 613860           |                                |
| LOCATION             | POINT124             | VOLUME           | 613706           |                                |
| LOCATION             | POINT125             | VOLUME           | 613617           |                                |
| LOCATION             | POINT126             | VOLUME           | 613533           | 3 6394176 269.0                |
|                      |                      |                  |                  |                                |

|     |           | POINT127 VOLUME 613456 6394221 268.6                     |
|-----|-----------|----------------------------------------------------------|
|     |           | POINT128 VOLUME 613328 6394228 268.6                     |
|     |           | POINT129 VOLUME 613463 6393914 267.7                     |
|     |           | POINT130 VOLUME 613431 6393651 266.7                     |
|     | LOCATION  | POINT131 VOLUME 612950 6393747 268.0                     |
|     |           | POINT132 VOLUME 613002 6394016 266.8                     |
|     |           | rce QS RH IL IV                                          |
| * * | Parameter |                                                          |
|     | HOUREMIS  | C:\Jobs\3363A\ISC\Scenario2\S2_emiss.dat POINT1-POINT132 |
|     |           | POINT1 1.0 2.0 10.0 2.0                                  |
|     |           | POINT2 1.0 2.0 10.0 2.0                                  |
|     |           | POINT3 1.0 2.0 10.0 2.0                                  |
|     |           | POINT4 1.0 2.0 10.0 2.0                                  |
|     |           | POINT5 1.0 2.0 10.0 2.0                                  |
|     |           | POINT6 1.0 2.0 10.0 2.0                                  |
|     |           | POINT7 1.0 2.0 10.0 2.0                                  |
|     |           | POINT8 1.0 2.0 10.0 2.0                                  |
|     |           | POINT9 1.0 2.0 10.0 2.0                                  |
|     |           | POINT10 1.0 2.0 10.0 2.0                                 |
|     |           | POINT11 1.0 2.0 10.0 2.0                                 |
|     |           | POINT12 1.0 2.0 10.0 2.0                                 |
|     |           | POINT13 1.0 2.0 10.0 2.0                                 |
|     |           | POINT14 1.0 2.0 10.0 2.0                                 |
|     |           | POINT15 1.0 2.0 10.0 2.0<br>POINT16 1.0 2.0 10.0 2.0     |
|     |           | POINT17 1.0 2.0 10.0 2.0                                 |
|     |           | POINT18 1.0 2.0 10.0 2.0                                 |
|     |           | POINT19 1.0 2.0 10.0 2.0                                 |
|     |           | POINT20 1.0 2.0 10.0 2.0                                 |
|     | SRCPARAM  | POINT21 1.0 2.0 10.0 2.0                                 |
|     | SRCPARAM  | POINT22 1.0 2.0 10.0 2.0                                 |
|     | SRCPARAM  | POINT23 1.0 2.0 10.0 2.0                                 |
|     | SRCPARAM  | POINT24 1.0 2.0 10.0 2.0                                 |
|     |           | POINT25 1.0 2.0 10.0 2.0                                 |
|     |           | POINT26 1.0 2.0 10.0 2.0                                 |
|     |           | POINT27 1.0 2.0 10.0 2.0                                 |
|     |           | POINT28 1.0 2.0 10.0 2.0                                 |
|     |           | POINT29 1.0 2.0 10.0 2.0<br>POINT30 1.0 2.0 10.0 2.0     |
|     |           | POINT31 1.0 2.0 10.0 2.0                                 |
|     |           | POINT32 1.0 2.0 10.0 2.0                                 |
|     |           | POINT33 1.0 2.0 10.0 2.0                                 |
|     |           | POINT34 1.0 2.0 10.0 2.0                                 |
|     |           | POINT35 1.0 2.0 10.0 2.0                                 |
|     | SRCPARAM  | POINT36 1.0 2.0 10.0 2.0                                 |
|     |           | POINT37 1.0 2.0 10.0 2.0                                 |
|     | SRCPARAM  | POINT38 1.0 2.0 10.0 2.0                                 |
|     | SRCPARAM  | POINT39 1.0 2.0 10.0 2.0                                 |
|     | SRCPARAM  |                                                          |
|     | SRCPARAM  |                                                          |
|     |           | POINT42 1.0 2.0 10.0 2.0                                 |
|     |           | POINT43 1.0 2.0 10.0 2.0                                 |
|     |           | POINT44 1.0 2.0 10.0 2.0                                 |
|     |           | POINT45 1.0 2.0 10.0 2.0<br>POINT46 1.0 2.0 10.0 2.0     |
|     |           | POINT46 1.0 2.0 10.0 2.0<br>POINT47 1.0 2.0 10.0 2.0     |
|     |           | POINT48 1.0 2.0 10.0 2.0                                 |
|     |           | POINT49 1.0 2.0 10.0 2.0                                 |
|     |           | POINT50 1.0 2.0 10.0 2.0                                 |
|     |           | POINT51 1.0 2.0 10.0 2.0                                 |
|     |           | POINT52 1.0 2.0 10.0 2.0                                 |
|     | SRCPARAM  |                                                          |
|     | SRCPARAM  | POINT54 1.0 2.0 10.0 2.0                                 |
|     | SRCPARAM  | POINT55 1.0 2.0 10.0 2.0                                 |
|     | SRCPARAM  | POINT56 1.0 2.0 10.0 2.0                                 |
|     |           | POINT57 1.0 2.0 10.0 2.0                                 |
|     |           | POINT58 1.0 2.0 10.0 2.0                                 |
|     |           | POINT59 1.0 2.0 10.0 2.0                                 |
|     | SRCPARAM  | POINT60 1.0 2.0 10.0 2.0                                 |

| SRCPARAM                                                                                                                                                                                                                                                                                                                                                             | POINT61                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0 2.0 10.0 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SRCPARAM                                                                                                                                                                                                                                                                                                                                                             | POINT62                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0 2.0 10.0 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SRCPARAM                                                                                                                                                                                                                                                                                                                                                             | POINT63                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0 2.0 10.0 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SRCPARAM                                                                                                                                                                                                                                                                                                                                                             | POINT64                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0 2.0 10.0 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SRCPARAM                                                                                                                                                                                                                                                                                                                                                             | POINT65                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0 2.0 10.0 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SRCPARAM                                                                                                                                                                                                                                                                                                                                                             | POINT66                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0 2.0 10.0 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SRCPARAM                                                                                                                                                                                                                                                                                                                                                             | POINT67                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0 2.0 10.0 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SRCPARAM                                                                                                                                                                                                                                                                                                                                                             | POINT68                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0 2.0 10.0 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SRCPARAM                                                                                                                                                                                                                                                                                                                                                             | POINT69                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0 2.0 10.0 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SRCPARAM                                                                                                                                                                                                                                                                                                                                                             | POINT70                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0 2.0 10.0 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SRCPARAM<br>SRCPARAM                                                                                                                                                                                                                                                                                                                                                 | POINT71<br>POINT72                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0 2.0 10.0 2.0<br>1.0 2.0 10.0 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SRCPARAM                                                                                                                                                                                                                                                                                                                                                             | POINT72<br>POINT73                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0 2.0 10.0 2.0<br>1.0 2.0 10.0 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SRCPARAM                                                                                                                                                                                                                                                                                                                                                             | POINT74                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0 2.0 10.0 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SRCPARAM                                                                                                                                                                                                                                                                                                                                                             | POINT75                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0 2.0 10.0 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SRCPARAM                                                                                                                                                                                                                                                                                                                                                             | POINT76                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0 2.0 10.0 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SRCPARAM                                                                                                                                                                                                                                                                                                                                                             | POINT77                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0 2.0 10.0 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SRCPARAM                                                                                                                                                                                                                                                                                                                                                             | POINT78                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0 2.0 10.0 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SRCPARAM                                                                                                                                                                                                                                                                                                                                                             | POINT79                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0 2.0 10.0 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SRCPARAM                                                                                                                                                                                                                                                                                                                                                             | POINT80                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0 2.0 10.0 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SRCPARAM                                                                                                                                                                                                                                                                                                                                                             | POINT81                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0 2.0 10.0 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SRCPARAM                                                                                                                                                                                                                                                                                                                                                             | POINT82                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0 2.0 10.0 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SRCPARAM                                                                                                                                                                                                                                                                                                                                                             | POINT83                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0 2.0 10.0 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SRCPARAM                                                                                                                                                                                                                                                                                                                                                             | POINT84                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0 2.0 10.0 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SRCPARAM                                                                                                                                                                                                                                                                                                                                                             | POINT85                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0 2.0 10.0 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SRCPARAM<br>SRCPARAM                                                                                                                                                                                                                                                                                                                                                 | POINT86<br>POINT87                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0 2.0 10.0 2.0<br>1.0 2.0 10.0 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SRCPARAM                                                                                                                                                                                                                                                                                                                                                             | POINT88                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0 2.0 10.0 2.0<br>1.0 2.0 10.0 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SRCPARAM                                                                                                                                                                                                                                                                                                                                                             | POINT89                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0 2.0 10.0 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SRCPARAM                                                                                                                                                                                                                                                                                                                                                             | POINT90                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0 2.0 10.0 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SRCPARAM                                                                                                                                                                                                                                                                                                                                                             | POINT91                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0 2.0 10.0 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SRCPARAM                                                                                                                                                                                                                                                                                                                                                             | POINT92                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0 2.0 10.0 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SRCPARAM                                                                                                                                                                                                                                                                                                                                                             | POINT93                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0 2.0 10.0 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SRCPARAM                                                                                                                                                                                                                                                                                                                                                             | POINT94                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0 2.0 10.0 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| SRCPARAM                                                                                                                                                                                                                                                                                                                                                             | POINT95                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0 2.0 10.0 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SRCPARAM<br>SRCPARAM                                                                                                                                                                                                                                                                                                                                                 | POINT95<br>POINT96                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0 2.0 10.0 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SRCPARAM<br>SRCPARAM                                                                                                                                                                                                                                                                                                                                                 | POINT96<br>POINT97                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0 2.0 10.0 2.0<br>1.0 2.0 10.0 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SRCPARAM<br>SRCPARAM<br>SRCPARAM                                                                                                                                                                                                                                                                                                                                     | POINT96<br>POINT97<br>POINT98                                                                                                                                                                                                                                                                                                                                                                                                | 1.0 2.0 10.0 2.0<br>1.0 2.0 10.0 2.0<br>1.0 2.0 10.0 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM                                                                                                                                                                                                                                                                                                                         | POINT96<br>POINT97<br>POINT98<br>POINT99                                                                                                                                                                                                                                                                                                                                                                                     | 1.0 2.0 10.0 2.0<br>1.0 2.0 10.0 2.0<br>1.0 2.0 10.0 2.0<br>1.0 2.0 10.0 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM                                                                                                                                                                                                                                                                                                             | POINT96<br>POINT97<br>POINT98<br>POINT99<br>POINT100                                                                                                                                                                                                                                                                                                                                                                         | 1.0 2.0 10.0 2.0<br>1.0 2.0 10.0 2.0<br>1.0 2.0 10.0 2.0<br>1.0 2.0 10.0 2.0<br>1.0 2.0 10.0 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM                                                                                                                                                                                                                                                                                                 | POINT96<br>POINT97<br>POINT98<br>POINT99<br>POINT100<br>POINT101                                                                                                                                                                                                                                                                                                                                                             | 1.0 2.0 10.0 2.0<br>1.0 2.0 10.0 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM                                                                                                                                                                                                                                                                                                 | POINT96<br>POINT97<br>POINT98<br>POINT99<br>POINT100<br>POINT101<br>POINT102                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM                                                                                                                                                                                                                                                                                     | POINT96<br>POINT97<br>POINT98<br>POINT99<br>POINT100<br>POINT101<br>POINT102<br>POINT103                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM                                                                                                                                                                                                                                                                                                 | POINT96<br>POINT97<br>POINT98<br>POINT99<br>POINT100<br>POINT101<br>POINT102                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM                                                                                                                                                                                                                                                                                     | POINT96<br>POINT97<br>POINT98<br>POINT99<br>POINT100<br>POINT101<br>POINT102<br>POINT103<br>POINT104                                                                                                                                                                                                                                                                                                                         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM                                                                                                                                                                                                                                                                         | POINT96<br>POINT97<br>POINT98<br>POINT99<br>POINT100<br>POINT101<br>POINT102<br>POINT103<br>POINT104<br>POINT105                                                                                                                                                                                                                                                                                                             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM                                                                                                                                                                                                                                                             | POINT96<br>POINT97<br>POINT98<br>POINT99<br>POINT100<br>POINT101<br>POINT102<br>POINT103<br>POINT104<br>POINT105<br>POINT106                                                                                                                                                                                                                                                                                                 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM                                                                                                                                                                                                                                                 | POINT96<br>POINT97<br>POINT98<br>POINT99<br>POINT100<br>POINT101<br>POINT102<br>POINT103<br>POINT104<br>POINT105<br>POINT106<br>POINT107<br>POINT108<br>POINT109                                                                                                                                                                                                                                                             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM                                                                                                                                                                                                                         | POINT96<br>POINT97<br>POINT98<br>POINT99<br>POINT100<br>POINT101<br>POINT102<br>POINT103<br>POINT104<br>POINT105<br>POINT106<br>POINT106<br>POINT108<br>POINT109<br>POINT109                                                                                                                                                                                                                                                 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM                                                                                                                                                                                                             | POINT96<br>POINT97<br>POINT98<br>POINT100<br>POINT101<br>POINT102<br>POINT103<br>POINT104<br>POINT105<br>POINT106<br>POINT106<br>POINT107<br>POINT108<br>POINT109<br>POINT110                                                                                                                                                                                                                                                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM                                                                                                                                                                                                 | POINT96<br>POINT97<br>POINT98<br>POINT99<br>POINT100<br>POINT101<br>POINT102<br>POINT103<br>POINT104<br>POINT105<br>POINT106<br>POINT106<br>POINT107<br>POINT108<br>POINT109<br>POINT110<br>POINT111                                                                                                                                                                                                                         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM                                                                                                                                                                                     | POINT96<br>POINT97<br>POINT98<br>POINT100<br>POINT101<br>POINT102<br>POINT103<br>POINT104<br>POINT105<br>POINT106<br>POINT106<br>POINT107<br>POINT108<br>POINT109<br>POINT110<br>POINT111<br>POINT112<br>POINT113                                                                                                                                                                                                            | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM                                                                                                                                                                         | POINT96<br>POINT97<br>POINT98<br>POINT100<br>POINT101<br>POINT102<br>POINT103<br>POINT104<br>POINT105<br>POINT106<br>POINT106<br>POINT107<br>POINT108<br>POINT109<br>POINT110<br>POINT111<br>POINT112<br>POINT113<br>POINT114                                                                                                                                                                                                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM                                                                                                                                                                         | POINT96<br>POINT97<br>POINT98<br>POINT99<br>POINT100<br>POINT101<br>POINT102<br>POINT103<br>POINT104<br>POINT105<br>POINT106<br>POINT106<br>POINT107<br>POINT108<br>POINT109<br>POINT110<br>POINT111<br>POINT112<br>POINT113<br>POINT114<br>POINT115                                                                                                                                                                         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM                                                                                                                                                             | POINT96<br>POINT97<br>POINT98<br>POINT99<br>POINT100<br>POINT101<br>POINT102<br>POINT103<br>POINT104<br>POINT105<br>POINT106<br>POINT106<br>POINT107<br>POINT108<br>POINT109<br>POINT110<br>POINT111<br>POINT112<br>POINT113<br>POINT114<br>POINT115<br>POINT116                                                                                                                                                             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM                                                                                                                                                 | POINT96<br>POINT97<br>POINT98<br>POINT99<br>POINT100<br>POINT101<br>POINT102<br>POINT103<br>POINT104<br>POINT105<br>POINT106<br>POINT106<br>POINT107<br>POINT108<br>POINT109<br>POINT110<br>POINT111<br>POINT112<br>POINT113<br>POINT114<br>POINT115<br>POINT116<br>POINT117                                                                                                                                                 | $\begin{array}{c} 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0$       |
| SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM                                                                                                                                                             | POINT96<br>POINT97<br>POINT98<br>POINT99<br>POINT100<br>POINT101<br>POINT102<br>POINT103<br>POINT104<br>POINT105<br>POINT106<br>POINT106<br>POINT107<br>POINT108<br>POINT109<br>POINT110<br>POINT111<br>POINT112<br>POINT113<br>POINT114<br>POINT115<br>POINT116                                                                                                                                                             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM                                                                                                                                     | POINT96<br>POINT97<br>POINT98<br>POINT99<br>POINT100<br>POINT101<br>POINT102<br>POINT103<br>POINT104<br>POINT105<br>POINT106<br>POINT106<br>POINT107<br>POINT108<br>POINT109<br>POINT110<br>POINT111<br>POINT112<br>POINT113<br>POINT114<br>POINT115<br>POINT116<br>POINT117<br>POINT118                                                                                                                                     | $\begin{array}{c} 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 $      |
| SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM                                                                                                                                     | POINT96<br>POINT97<br>POINT98<br>POINT99<br>POINT100<br>POINT101<br>POINT102<br>POINT103<br>POINT104<br>POINT105<br>POINT106<br>POINT106<br>POINT107<br>POINT108<br>POINT109<br>POINT110<br>POINT111<br>POINT112<br>POINT113<br>POINT114<br>POINT115<br>POINT116<br>POINT117<br>POINT118<br>POINT119                                                                                                                         | $\begin{array}{c} 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 $      |
| SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM                                                                                                                         | POINT96<br>POINT97<br>POINT98<br>POINT99<br>POINT100<br>POINT101<br>POINT102<br>POINT103<br>POINT104<br>POINT105<br>POINT106<br>POINT106<br>POINT107<br>POINT108<br>POINT109<br>POINT110<br>POINT111<br>POINT112<br>POINT113<br>POINT114<br>POINT115<br>POINT116<br>POINT116<br>POINT117<br>POINT118<br>POINT119<br>POINT120                                                                                                 | $\begin{array}{c} 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 10.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \$      |
| SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM                                                                                                             | POINT96<br>POINT97<br>POINT98<br>POINT99<br>POINT100<br>POINT101<br>POINT102<br>POINT103<br>POINT104<br>POINT105<br>POINT106<br>POINT106<br>POINT107<br>POINT108<br>POINT109<br>POINT110<br>POINT111<br>POINT112<br>POINT114<br>POINT115<br>POINT116<br>POINT116<br>POINT117<br>POINT118<br>POINT118<br>POINT120<br>POINT121<br>POINT121<br>POINT122<br>POINT123                                                             | $\begin{array}{c} 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 10.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 2.0 \ 1.0 \ 2.0 $     |
| SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM                                                             | POINT96<br>POINT97<br>POINT98<br>POINT100<br>POINT101<br>POINT102<br>POINT103<br>POINT103<br>POINT104<br>POINT105<br>POINT106<br>POINT106<br>POINT107<br>POINT108<br>POINT109<br>POINT109<br>POINT110<br>POINT112<br>POINT114<br>POINT115<br>POINT116<br>POINT116<br>POINT117<br>POINT118<br>POINT119<br>POINT120<br>POINT121<br>POINT121<br>POINT123<br>POINT123<br>POINT124                                                | $\begin{array}{c} 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 10.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0$    |
| SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM                                                 | POINT96<br>POINT97<br>POINT98<br>POINT99<br>POINT100<br>POINT101<br>POINT102<br>POINT103<br>POINT104<br>POINT105<br>POINT106<br>POINT106<br>POINT107<br>POINT108<br>POINT109<br>POINT109<br>POINT110<br>POINT110<br>POINT111<br>POINT112<br>POINT114<br>POINT115<br>POINT115<br>POINT116<br>POINT116<br>POINT117<br>POINT118<br>POINT119<br>POINT120<br>POINT121<br>POINT121<br>POINT122<br>POINT123<br>POINT124<br>POINT125 | $\begin{array}{c} 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \ 1.0 \ 2.0 \ 10.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.$    |
| SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM                                     | POINT96<br>POINT97<br>POINT98<br>POINT99<br>POINT100<br>POINT101<br>POINT102<br>POINT103<br>POINT103<br>POINT105<br>POINT106<br>POINT106<br>POINT107<br>POINT108<br>POINT109<br>POINT109<br>POINT110<br>POINT110<br>POINT112<br>POINT112<br>POINT115<br>POINT115<br>POINT116<br>POINT116<br>POINT117<br>POINT118<br>POINT119<br>POINT120<br>POINT121<br>POINT121<br>POINT123<br>POINT124<br>POINT125<br>POINT126             | $\begin{array}{c} 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.$  |
| SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM | POINT96<br>POINT97<br>POINT98<br>POINT99<br>POINT100<br>POINT101<br>POINT102<br>POINT103<br>POINT104<br>POINT105<br>POINT106<br>POINT106<br>POINT107<br>POINT108<br>POINT109<br>POINT109<br>POINT110<br>POINT111<br>POINT112<br>POINT113<br>POINT114<br>POINT115<br>POINT116<br>POINT117<br>POINT118<br>POINT120<br>POINT121<br>POINT121<br>POINT123<br>POINT124<br>POINT125<br>POINT126<br>POINT127                         | $\begin{array}{c} 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ $ |
| SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM<br>SRCPARAM                                     | POINT96<br>POINT97<br>POINT98<br>POINT99<br>POINT100<br>POINT101<br>POINT102<br>POINT103<br>POINT103<br>POINT105<br>POINT106<br>POINT106<br>POINT107<br>POINT108<br>POINT109<br>POINT109<br>POINT110<br>POINT110<br>POINT112<br>POINT112<br>POINT115<br>POINT115<br>POINT116<br>POINT116<br>POINT117<br>POINT118<br>POINT119<br>POINT120<br>POINT121<br>POINT121<br>POINT123<br>POINT124<br>POINT125<br>POINT126             | $\begin{array}{c} 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 10.0 \ 2.0 \ 1.0 \ 2.0 \ 10.0 \ 2.0 \\ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.0 \ 2.0 \ 1.$  |

SRCPARAMPOINT1301.02.010.02.0SRCPARAMPOINT1311.02.010.02.0 SRCPARAM POINT132 1.0 2.0 10.0 2.0 PARTDIAM POINT1-POINT44 1.0 PARTDIAM POINT45-POINT88 5.0 PARTDIAM POINT89-POINT132 17.3 MASSFRAX POINT1-POINT132 1.0 PARTDENS POINT1-POINT132 2.5 SRCGROUP FP POINT1-POINT44 SRCGROUP CM POINT45-POINT88 SRCGROUP REST POINT89-POINT132 SO FINISHED RE STARTING RE DISCCART 614582.6263 6396357.314 281.0741614 RE DISCCART 614568.136 6396226.901 281.31864 RE DISCCART 614669.5686 6396139.959 279.1557645 RE DISCCART 614814.4724 6396053.016 281.264796 RE DISCCART 614799.982 6396139.959 280.39941 RE DISCCART 614742.0205 6396226.901 280.689215 RE DISCCART 614713.0397 6396328.333 281.130397 RE DISCCART 614857.9435 6396270.372 279.965415 RE DISCCART 614915.905 6396197.92 277.8584418 RE DISCCART 615060.8088 6396241.391 277.5761263 RE DISCCART 615162.2415 6396168.939 278.6739167 RE DISCCART 615060.8088 6396110.978 277 RE DISCCART 614915.905 6396038.526 280.6238944 RE DISCCART 615176.7319 6396038.526 278.963753 RE DISCCART 615162.2415 6395908.112 280.6434203 RE DISCCART 615017.3377 6395879.132 281.9276394 RE DISCCART 615147.7511 6395777.699 279.299479 RE DISCCART 614988.3569 6395821.17 281.8410833 RE DISCCART 614901.4147 6395719.738 279.225674 RE DISCCART 614828.9628 6395719.738 281.1882828 RE DISCCART 614799.982 6395618.305 280.36574 RE DISCCART 614785.4916 6395560.343 278.974228 RE DISCCART 614886.9243 6395502.382 277.1576916 RE DISCCART 614915.905 6395618.305 278.2412782 RE DISCCART 615075.2992 6395690.757 279.4255232 RE DISCCART 614973.8666 6395690.757 280.2483522 RE DISCCART 615031.8281 6395545.853 277.4076806 RE DISCCART 615046.3185 6395371.968 277.66347 RE DISCCART 614944.8858 6395299.517 279.1061259 RE DISCCART 614843.4531 6395256.045 279.7406367 RE DISCCART 614814.4724 6395169.103 280.4462974 RE DISCCART 614684.059 6395111.142 274.2809756 RE DISCCART 614568.136 6395169.103 274.4170902 RE DISCCART 614553.6456 6395314.007 279.676526 RE DISCCART 614553.6456 6395473.401 279.4086819 RE DISCCART 614423.2322 6395531.363 279.140418 RE DISCCART 614423.2322 6395661.776 276.6756772 RE DISCCART 614495.6841 6395763.209 276.63209 RE DISCCART 614437.7225 6395864.641 277.805136 RE DISCCART 614423.2322 6396053.016 279.2515317 RE DISCCART 614539.1552 6396096.487 278.2230317 RE DISCCART 614350.7803 6395995.055 277.5382433 RE DISCCART 614220.3669 6396096.487 275.96487 RE DISCCART 614220.3669 6396241.391 276.3296094 RE DISCCART 614278.3284 6396357.314 276.789856 RE DISCCART 614437.7225 6396342.824 279.3473572 RE DISCCART 614640.5878 6396415.276 281.0907581 RE DISCCART 614843.4531 6396386.295 280.696407 RE DISCCART 615002.8473 6396313.843 278.9754685 RE DISCCART 615263.6741 6396226.901 279.1678184 RE DISCCART 615263.6741 6396009.545 279.5759641 RE DISCCART 615234.6934 6395806.68 278.7430412 RE DISCCART 615205.7126 6395632.795 279.3824915 RE DISCCART 615118.7703 6395545.853 278.7478685 RE DISCCART 615162.2415 6395400.949 278.8708283

#### ALKANE RESOURCES LTD Tomingley Gold Project

Report No. 616/06

| RE DISCCART                | 614307.3091 6395835.661 274.932493                                         |
|----------------------------|----------------------------------------------------------------------------|
| RE DISCCART                | 614017.5016 6396053.016 275.1319926                                        |
| RE DISCCART                | 614176.8957 6395980.564 275.141232                                         |
| RE DISCCART                | 614278.3284 6395647.286 275.364704                                         |
| RE DISCCART<br>RE DISCCART | 614379.761 6395386.459 276.1372469<br>614452.2129 6395212.574 275.3226975  |
| RE DISCCARI                | 614191.3861 6395748.718 273.48718                                          |
| RE DISCOART                | 615060.8088 6396415.276 279.272497                                         |
| RE DISCCART                | 615220.203 6396328.333 278.76869                                           |
| RE DISCCART                | 614799.982 6396560.18 280.398525                                           |
| RE DISCCART                | 614582.6263 6396516.708 281.768207                                         |
| RE DISCCART                | 614408.7418 6396574.67 276.9879649                                         |
| RE DISCCART                | 614191.3861 6396487.728 278.812283                                         |
| RE DISCCART                | 614089.9535 6396357.314 277.49349                                          |
| RE DISCCART                | 614017.5016 6396197.92 275.1885353                                         |
| RE DISCCART<br>RE DISCCART | 614089.9535 6395893.622 273.9123503<br>614046.4823 6395690.757 273.9649184 |
| RE DISCCART                | 614162.4054 6395502.382 273.4205409                                        |
| RE DISCCART                | 614234.8572 6395256.045 273.0256215                                        |
| RE DISCCART                | 614495.6841 6395009.709 275.9178723                                        |
| RE DISCCART                | 614959.3762 6395024.199 276.7465335                                        |
| RE DISCCART                | 615133.2607 6395227.065 275.6668033                                        |
| RE DISCCART                |                                                                            |
| RE DISCCART                | 615365.1068 6395864.641 280.3647449                                        |
| RE DISCCART                | 615437.5587 6396197.92 280.375587                                          |
| RE DISCCART<br>RE DISCCART | 615307.1453 6396502.218 281.8586788<br>614930.3954 6396618.141 281.941134  |
| RE DISCCART                | 615263.6741 6396893.458 283.469742                                         |
| RE DISCCART                | 615046.3185 6396936.929 283.4464446                                        |
| RE DISCCART                | 615060.8088 6396777.535 281.136957                                         |
| RE DISCCART                | 615133.2607 6396632.631 283.217066                                         |
| RE DISCCART                | 615350.6164 6396705.083 283.1144337                                        |
| RE DISCCART                | 615350.6164 6396792.026 285.2826495                                        |
| RE DISCCART                | 615249.1838 6396705.083 284.5831624                                        |
| RE DISCCART<br>RE DISCCART | 615394.0875 6396907.949 284.8519853<br>615596.9528 6397052.852 284.5124149 |
| RE DISCCART                | 615495.5202 6396994.891 284.05109                                          |
| RE DISCCART                | 615770.8374 6396907.949 283.07949                                          |
| RE DISCCART                | 615654.9144 6396922.439 283.22439                                          |
| RE DISCCART                | 615698.3855 6396763.045 282.385695                                         |
| RE DISCCART                | 615538.9913 6396734.064 283.86718                                          |
| RE DISCCART                | 615423.0683 6396618.141 281.4539412                                        |
| RE DISCCART                | 615437.5587 6396777.535 283.7194512                                        |
| RE DISCCART                | 615394.0875 6397038.362 283.4843681<br>615741.8566 6396980.4 283.804       |
| RE DISCCART<br>RE DISCCART |                                                                            |
| RE DISCCART                |                                                                            |
| RE DISCCART                |                                                                            |
| RE DISCCART                | 616495.3563 6398052.689 293.8362218                                        |
| RE DISCCART                |                                                                            |
| RE DISCCART                |                                                                            |
| RE DISCCART                |                                                                            |
| RE DISCCART<br>RE DISCCART | 616408.414 6398052.689 290.7698625                                         |
| RE DISCOART                |                                                                            |
| RE DISCCART                | 616292.491 6398023.708 288.0572877                                         |
| RE DISCCART                | 616422.9044 6398168.612 290.444721                                         |
| RE DISCCART                |                                                                            |
| RE DISCCART                | 614104.4438 6398081.669 279.1307261<br>613930.5593 6398067.179 280.1946213 |
| RE DISCCART<br>RE DISCCART |                                                                            |
| RE DISCCART                |                                                                            |
| RE DISCCART                | 614249.3476 6397965.746 278.9914215                                        |
| RE DISCCART                |                                                                            |
| RE DISCCART                |                                                                            |
| RE DISCCART                | 614046.4823 6398212.083 279.6083433                                        |
|                            |                                                                            |

| RE DISCCART                                                                            |                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RE DISCCART                                                                            |                                                                                                                                                                                                                                                                                                                    |
| RE DISCCART                                                                            |                                                                                                                                                                                                                                                                                                                    |
| RE DISCCART                                                                            | 614278.3284 6398096.16 278.8133621                                                                                                                                                                                                                                                                                 |
| RE DISCCART                                                                            | 614089.9535 6398226.573 278.9148247                                                                                                                                                                                                                                                                                |
| RE DISCCART                                                                            |                                                                                                                                                                                                                                                                                                                    |
| RE DISCCART                                                                            | 612524.9926 6398385.967 270.5656581                                                                                                                                                                                                                                                                                |
| RE DISCCART                                                                            | 612640.9156 6398255.554 273.2929335                                                                                                                                                                                                                                                                                |
| RE DISCCART                                                                            | 612568.4637 6398299.025 273.3589984                                                                                                                                                                                                                                                                                |
| RE DISCCART                                                                            | 612611.9348 6398125.14 272.0300041                                                                                                                                                                                                                                                                                 |
| RE DISCCART                                                                            | 612481.5214 6398038.198 273.8982066                                                                                                                                                                                                                                                                                |
| RE DISCCART                                                                            |                                                                                                                                                                                                                                                                                                                    |
| RE DISCCART                                                                            | 612351.108 6398270.044 273.4512382                                                                                                                                                                                                                                                                                 |
| RE DISCCART                                                                            | 612452.5407 6398154.121 273.2252485                                                                                                                                                                                                                                                                                |
| RE DISCCART                                                                            | 612409.0695 6398023.708 271.724743                                                                                                                                                                                                                                                                                 |
| RE DISCCART                                                                            |                                                                                                                                                                                                                                                                                                                    |
| RE DISCCART                                                                            |                                                                                                                                                                                                                                                                                                                    |
| RE DISCCART                                                                            |                                                                                                                                                                                                                                                                                                                    |
| RE DISCCART<br>RE DISCCART                                                             | 612336.6176 6398400.458 272.9048262<br>611670.0602 6395792.189 269.276322                                                                                                                                                                                                                                          |
|                                                                                        | 611670.0602 6395792.189 269.276322<br>611785.9833 6395850.151 271.9331482                                                                                                                                                                                                                                          |
| RE DISCCART<br>RE DISCCART                                                             | 611887.4159 6395748.718 268.2484554                                                                                                                                                                                                                                                                                |
| RE DISCCART                                                                            |                                                                                                                                                                                                                                                                                                                    |
| RE DISCCART                                                                            |                                                                                                                                                                                                                                                                                                                    |
| RE DISCCART                                                                            | 611583.118 6395690.757 264.92361                                                                                                                                                                                                                                                                                   |
| RE DISCCART                                                                            | 611728.0217 6395618.305 267.9541267                                                                                                                                                                                                                                                                                |
| RE DISCCART                                                                            | 611757.0025 6395473.401 265.1408431                                                                                                                                                                                                                                                                                |
| RE DISCCART                                                                            | 611959.8678 6395603.815 266.0763                                                                                                                                                                                                                                                                                   |
| RE DISCCART                                                                            |                                                                                                                                                                                                                                                                                                                    |
| RE DISCCART                                                                            |                                                                                                                                                                                                                                                                                                                    |
| RE DISCCART                                                                            | 611539.6468 6395850.151 268.8991753                                                                                                                                                                                                                                                                                |
| RE DISCCART                                                                            | 611467.1949 6395603.815 264.96185                                                                                                                                                                                                                                                                                  |
| RE DISCCART                                                                            | 613524.8287 6394705.411 269.248287                                                                                                                                                                                                                                                                                 |
| RE DISCCART                                                                            |                                                                                                                                                                                                                                                                                                                    |
| RE DISCCART                                                                            |                                                                                                                                                                                                                                                                                                                    |
| RE DISCCART                                                                            | 613698.7132 6394430.094 270                                                                                                                                                                                                                                                                                        |
| RE DISCCART<br>RE DISCCART                                                             | 613539.3191 6394430.094 268.786382<br>613394.4153 6394430.094 268.6209792                                                                                                                                                                                                                                          |
| RE DISCCARI                                                                            | 613394.4153 6394430.094 268.6209792<br>613394.4153 6394546.017 268.0256991                                                                                                                                                                                                                                         |
| RE DISCCART                                                                            |                                                                                                                                                                                                                                                                                                                    |
| RE DISCCART                                                                            |                                                                                                                                                                                                                                                                                                                    |
| RE DISCCART                                                                            | 613771.1651 6394690.921 269.802441                                                                                                                                                                                                                                                                                 |
| RE DISCCART                                                                            | 613771.1651 6394517.036 271.3020651                                                                                                                                                                                                                                                                                |
| RE DISCCART                                                                            | 613539.3191 6394502.546 268.8018314                                                                                                                                                                                                                                                                                |
| RE DISCCART                                                                            | 613292.9826 6394546.017 268.492462                                                                                                                                                                                                                                                                                 |
| RE DISCCART                                                                            | 613307.473 6394459.075 267.6519165                                                                                                                                                                                                                                                                                 |
| RE DISCCART                                                                            | 613292.9826 6394676.43 269.727206                                                                                                                                                                                                                                                                                  |
| RE DISCCART                                                                            |                                                                                                                                                                                                                                                                                                                    |
|                                                                                        | 617509.6828 6393082.489 289.7191927                                                                                                                                                                                                                                                                                |
| RE DISCCART                                                                            |                                                                                                                                                                                                                                                                                                                    |
| RE DISCCART<br>RE DISCCART                                                             |                                                                                                                                                                                                                                                                                                                    |
| RE DISCCART<br>RE DISCCART                                                             |                                                                                                                                                                                                                                                                                                                    |
| RE DISCCART                                                                            |                                                                                                                                                                                                                                                                                                                    |
| RE DISCCART                                                                            |                                                                                                                                                                                                                                                                                                                    |
| RE DISCCART                                                                            |                                                                                                                                                                                                                                                                                                                    |
| RE DISCCART                                                                            |                                                                                                                                                                                                                                                                                                                    |
| RE DISCCART                                                                            | 617350.2887 6392850.643 286.7581829                                                                                                                                                                                                                                                                                |
| RE DISCCART                                                                            | 617234.3656 6392937.585 289.1613571                                                                                                                                                                                                                                                                                |
| RE DISCCART                                                                            |                                                                                                                                                                                                                                                                                                                    |
|                                                                                        |                                                                                                                                                                                                                                                                                                                    |
| RE DISCCART                                                                            |                                                                                                                                                                                                                                                                                                                    |
| RE DISCCART<br>RE DISCCART                                                             | 617292.3271 6393328.825 292.6315699<br>614452.2129 6390691.576 268.9194883                                                                                                                                                                                                                                         |
| RE DISCCART<br>RE DISCCART                                                             | 617292.3271 6393328.825 292.6315699<br>614452.2129 6390691.576 268.9194883<br>614582.6263 6390633.615 270.0970294                                                                                                                                                                                                  |
| RE DISCCART<br>RE DISCCART<br>RE DISCCART                                              | 617292.3271 6393328.825 292.6315699<br>614452.2129 6390691.576 268.9194883<br>614582.6263 6390633.615 270.0970294<br>614539.1552 6390474.22 269.9399619                                                                                                                                                            |
| RE DISCCART<br>RE DISCCART<br>RE DISCCART<br>RE DISCCART                               | 617292.3271 6393328.825 292.6315699<br>614452.2129 6390691.576 268.9194883<br>614582.6263 6390633.615 270.0970294<br>614539.1552 6390474.22 269.9399619<br>614423.2322 6390445.24 269.2003025                                                                                                                      |
| RE DISCCART<br>RE DISCCART<br>RE DISCCART<br>RE DISCCART<br>RE DISCCART                | 617292.3271 6393328.825 292.6315699<br>614452.2129 6390691.576 268.9194883<br>614582.6263 6390633.615 270.0970294<br>614539.1552 6390474.22 269.9399619<br>614423.2322 6390445.24 269.2003025<br>614321.7995 6390575.653 269.3990902                                                                               |
| RE DISCCART<br>RE DISCCART<br>RE DISCCART<br>RE DISCCART<br>RE DISCCART<br>RE DISCCART | 617292.3271 6393328.825 292.6315699<br>614452.2129 6390691.576 268.9194883<br>614582.6263 6390633.615 270.0970294<br>614539.1552 6390474.22 269.9399619<br>614423.2322 6390445.24 269.2003025<br>614321.7995 6390575.653 269.3990902<br>614336.2899 6390706.067 268.4402048                                        |
| RE DISCCART<br>RE DISCCART<br>RE DISCCART<br>RE DISCCART<br>RE DISCCART                | 617292.3271 6393328.825 292.6315699<br>614452.2129 6390691.576 268.9194883<br>614582.6263 6390633.615 270.0970294<br>614539.1552 6390474.22 269.9399619<br>614423.2322 6390445.24 269.2003025<br>614321.7995 6390575.653 269.3990902<br>614336.2899 6390706.067 268.4402048<br>614582.6263 6390720.557 269.1698549 |

RE DISCCART 614582.6263 6390387.278 270.8041602 RE DISCCART 614437.7225 6390314.826 269.14826 RE DISCCART 614321.7995 6390430.749 269.8659374 RE DISCCART 614234.8572 6390532.182 269.348572 RE DISCCART 614408.7418 6390821.99 269.2391232 RE DISCCART 611800.4736 6392459.402 260.816696 RE DISCCART 611959.8678 6392328.989 260.6961192 RE DISCCART 611843.9448 6392415.931 262.120828 RE DISCCART 611872.9255 6392256.537 259.7184411 RE DISCCART 611742.5121 6392082.653 259.2497277 RE DISCCART 611699.041 6392213.066 259 RE DISCCART 611814.964 6392155.104 259 RE DISCCART 611655.5699 6392300.008 259.0002134 RE DISCCART 611655.5699 6392430.422 261.7683728 RE DISCCART 611785.9833 6392531.854 260.4649276 RE DISCCART 611959.8678 6392488.383 260.633662 RE DISCCART 612061.3005 6392213.066 259.9637109 RE DISCCART 611655.5699 6392517.364 261.5755716 RE DISCCART 611539.6468 6392343.479 259.43479 RE DISCCART 611583.118 6392155.104 258.7956534 RE DISCCART 611641.0795 6392068.162 258.2984344 RE DISCCART 611496.1757 6392473.893 259.9900159 RE DISCCART 614365.2707 6396748.554 278.48554 RE DISCCART 614742.0205 6396792.026 280.340355 RE DISCCART 614944.8858 6397110.814 280.6165985 RE DISCCART 615278.1645 6397299.189 283.7996359 RE DISCCART 615712.8759 6397284.698 285.1575783 RE DISCCART 616133.0968 6396907.949 285.669032 RE DISCCART 615770.8374 6396458.747 284.1215035 RE DISCCART 615510.0106 6396400.785 280.100106 RE DISCCART 615669.4047 6396009.545 285.7602938 RE DISCCART 615452.0491 6395763.209 278.9610872 RE DISCCART 615495.5202 6395487.891 280.8395366 RE DISCCART 615408.5779 6394995.219 278.846729 RE DISCCART 615075.2992 6394748.882 272.7413511 RE DISCCART 614582.6263 6394864.805 274.0709195 RE DISCCART 614118.9342 6394893.786 271.2397163 RE DISCCART 613959.5401 6395198.084 269.423759 RE DISCCART 613727.694 6395545.853 273.4620453 RE DISCCART 613611.771 6396009.545 273.09545 RE DISCCART 613800.1459 6396400.785 278.9921385 RE DISCCART 614147.915 6396922.439 280.6891065 RE DISCCART 614611.6071 6397255.718 281.4261241 RE DISCCART 615060.8088 6397632.468 281.846794 RE DISCCART 615828.7989 6397661.448 285.1110255 RE DISCCART 616205.5487 6397516.544 289.2566251 RE DISCCART 616799.6543 6397009.381 288.8964676 RE DISCCART 616234.5295 6396574.67 284.6683264 RE DISCCART 616306.9814 6396125.468 283.579174 RE DISCCART 616973.5388 6396255.882 286.55882 RE DISCCART 616147.5872 6395806.68 281.409072 RE DISCCART 616770.6735 6395285.026 281.6009085 RE DISCCART 616046.1546 6395111.142 277.0514255 RE DISCCART 615872.27 6394343.152 278.835561 RE DISCCART 617190.8945 6394444.584 288.676376 RE DISCCART 616220.0391 6394560.507 283.2483294 RE DISCCART 615828.7989 6393604.142 278.84011 RE DISCCART 615162.2415 6393922.931 271.938309 RE DISCCART 615205.7126 6394343.152 271.674908 RE DISCCART 614379.761 6394212.738 270.92499 RE DISCCART 614278.3284 6394574.998 272.3374273 RE DISCCART 614582.6263 6393575.162 270.646046 RE DISCCART 614698.5494 6394285.19 272.970988 RE DISCCART 613742.1844 6393850.479 266 RE DISCCART 612916.2328 6393966.402 263.270117 RE DISCCART 612872.7617 6394574.998 271.3647916 RE DISCCART 613235.0211 6395241.555 270.7891308 RE DISCCART 613032.1558 6396067.507 272.1092183 RE DISCCART 613481.3576 6396734.064 276.967792

| RE DISCCART                | 613669.7325 6397299.189 276.9862347                                        |
|----------------------------|----------------------------------------------------------------------------|
| RE DISCCART                | 614263.838 6397603.487 280.0945106                                         |
| RE DISCCART                | 615263.6741 6398342.496 289.8103704                                        |
| RE DISCCART                | 614771.0013 6398125.14 282.9188499                                         |
| RE DISCCART                | 615872.27 6398212.083 288.149823                                           |
| RE DISCCART                | 617219.8752 6398516.381 294.67238<br>617202 3271 6307840 823 205 3415036   |
| RE DISCCART<br>RE DISCCART | 617292.3271 6397849.823 295.3415036<br>616770.6735 6397502.054 290.7332987 |
| RE DISCCART                | 617350.2887 6397197.756 295.4975099                                        |
| RE DISCOART                | 617451.7213 6396545.689 292.0186971                                        |
| RE DISCCART                | 617625.6058 6395632.795 297.7083642                                        |
| RE DISCCART                | 616930.0677 6395748.718 283.9266315                                        |
| RE DISCCART                | 617669.077 6395053.18 301.855057                                           |
| RE DISCCART                | 616828.635 6394574.998 283.6079632                                         |
| RE DISCCART                | 616611.2793 6393864.969 284.033768                                         |
| RE DISCCART                | 617799.4904 6394473.565 302.191662                                         |
| RE DISCCART                | 617408.2502 6393937.421 289.4258389                                        |
| RE DISCCART                | 616944.5581 6393647.613 289.5186741                                        |
| RE DISCCART                | 616973.5388 6393140.45 295.3454809                                         |
| RE DISCCART                | 617103.9522 6392618.797 284.4401261                                        |
| RE DISCCART                | 617944.3942 6392749.21 297.1703059                                         |
| RE DISCCART<br>RE DISCCART | 617770.5096 6393386.787 294.3491027<br>618393.5959 6394299.68 320.7850671  |
| RE DISCCART<br>RE DISCCART | 619422.4128 6393560.671 317.5695846                                        |
| RE DISCOART                | 617871.9423 6393937.421 296.1696307                                        |
| RE DISCCART                | 618509.5189 6393821.498 300.21498                                          |
| RE DISCCART                | 618581.9708 6392169.595 314.165598                                         |
| RE DISCCART                | 616451.8852 6391488.547 282.289792                                         |
| RE DISCCART                | 616321.4718 6393314.335 280.6237965                                        |
| RE DISCCART                | 616321.4718 6392459.402 281.9934636                                        |
| RE DISCCART                | 615437.5587 6392879.623 271.0952836                                        |
| RE DISCCART                | 614828.9628 6393198.412 269.2942273                                        |
| RE DISCCART                | 613539.3191 6392705.739 264                                                |
| RE DISCCART                | 613640.7517 6393401.277 266                                                |
| RE DISCCART                | 614423.2322 6392850.643 269.2353097                                        |
| RE DISCCART<br>RE DISCCART | 614857.9435 6391705.903 270.9437421<br>615365.1068 6392198.576 276.3071048 |
| RE DISCCART                | 614278.3284 6392300.008 267.566568                                         |
| RE DISCOART                | 613206.0404 6391358.134 264.0449418                                        |
| RE DISCCART                | 612930.7232 6392213.066 264.0057691                                        |
| RE DISCCART                | 613887.0882 6391923.258 265.3016375                                        |
| RE DISCCART                | 613090.1173 6392879.623 262.59246                                          |
| RE DISCCART                | 612191.7139 6393792.517 263.0686295                                        |
| RE DISCCART                | 612061.3005 6393183.921 261.8680899                                        |
|                            | 612003.3389 6394473.565 263.7602126                                        |
|                            | 612510.5022 6395618.305 268.2496234                                        |
|                            | 612582.9541 6397154.285 271.45715                                          |
|                            | 612119.262 6395111.142 265.1328817<br>612496.0118 6396545.689 272.1473411  |
| RE DISCCART                |                                                                            |
| RE DISCCART                |                                                                            |
|                            | 611742.5121 6396980.4 269.0833237                                          |
| RE DISCCART                | 611554.1372 6397704.919 267.0266301                                        |
| RE DISCCART                | 610873.0894 6396965.91 265.2629973                                         |
| RE DISCCART                | 610510.8299 6397733.9 265.9265733                                          |
| RE DISCCART                | 610670.2241 6396299.353 265.693154                                         |
| RE DISCCART                | 611394.743 6396415.276 266.9919694                                         |
|                            | 610467.3588 6395357.478 260                                                |
|                            | 610960.0317 6395632.795 263.4654809                                        |
| RE DISCCART                |                                                                            |
| RE DISCCART                |                                                                            |
| RE DISCCART                |                                                                            |
| RE DISCCART<br>RE DISCCART | 610742.676 6393893.95 259.168481<br>611249.8392 6393705.575 261.9164646    |
| RE DISCCARI                |                                                                            |
| RE DISCCART                |                                                                            |
| RE DISCOART                |                                                                            |
| RE DISCCART                |                                                                            |
| RE DISCCART                | 611959.8678 6391995.71 259.3841053                                         |
|                            |                                                                            |

| RE DISCCART | 612133.7523 6392502.873 260.990303                                         |
|-------------|----------------------------------------------------------------------------|
| RE DISCCART | 611785.9833 6392749.21 260.7218806                                         |
| RE DISCCART | 611336.7815 6392647.777 258.302039                                         |
|             |                                                                            |
| RE DISCCART | 611278.82 6392256.537 258                                                  |
| RE DISCCART | 611481.6853 6391966.729 260.5118363                                        |
| RE DISCCART | 611713.5314 6391749.374 257.6273599                                        |
|             |                                                                            |
| RE DISCCART | 612409.0695 6391865.297 261.6214961                                        |
| RE DISCCART | 611829.4544 6390633.615 257.468317                                         |
| RE DISCCART | 610989.0124 6391082.816 254.6355458                                        |
|             | 610380.4165 6391546.509 256.3002014                                        |
| RE DISCCART |                                                                            |
| RE DISCCART | 610612.2626 6390735.047 254.35047                                          |
| RE DISCCART | 610496.3396 6389909.096 252.09096                                          |
| RE DISCCART | 611438.2142 6390271.355 255.2726774                                        |
|             |                                                                            |
| RE DISCCART | 612365.5984 6391068.326 259.4310825                                        |
| RE DISCCART | 612742.3482 6390532.182 260.101662                                         |
| RE DISCCART | 611699.041 6389836.644 258.9990475                                         |
| RE DISCCART | 613119.0981 6390126.451 262.2139936                                        |
|             |                                                                            |
| RE DISCCART | 613684.2229 6390850.97 266.4129449                                         |
| RE DISCCART | 613887.0882 6389923.586 266.9738938                                        |
| RE DISCCART | 614524.6648 6391343.643 268.0255072                                        |
|             |                                                                            |
| RE DISCCART |                                                                            |
| RE DISCCART | 615379.5972 6390952.403 277.4171132                                        |
| RE DISCCART | 616553.3178 6390648.105 285.0723354                                        |
| RE DISCCART | 615060.8088 6390155.432 272.9989313                                        |
|             |                                                                            |
| RE DISCCART | 614771.0013 6390706.067 270.3514665                                        |
| RE DISCCART | 614408.7418 6390937.913 270.087418                                         |
| RE DISCCART | 614104.4438 6390720.557 267.7591271                                        |
|             |                                                                            |
| RE DISCCART | 614003.0112 6390445.24 269.482512                                          |
| RE DISCCART | 614234.8572 6390198.903 268.3666882                                        |
| RE DISCCART | 614713.0397 6390314.826 272.7406757                                        |
| RE DISCCART | 614524.6648 6389807.663 272.753352                                         |
|             |                                                                            |
| RE DISCCART | 615654.9144 6390619.124 283.3516972                                        |
| RE DISCCART | 616278.0006 6390025.019 279.0550403                                        |
| RE DISCCART | 618089.298 6390198.903 312.36298                                           |
|             |                                                                            |
| RE DISCCART |                                                                            |
| RE DISCCART | 617958.8846 6391749.374 298.1725444                                        |
| RE DISCCART | 617074.9715 6391821.826 287.49943                                          |
| RE DISCCART | 618828.3073 6391213.23 318.8112942                                         |
|             |                                                                            |
| RE DISCCART | 618828.3073 6390213.394 327.3622572                                        |
| RE DISCCART | 619465.8839 6390242.374 333.4142973                                        |
| RE DISCCART | 617118.4426 6390184.413 298.496166                                         |
| RE DISCCART | 619190.5667 6391488.547 355.237504                                         |
|             |                                                                            |
| RE DISCCART | 617147.4234 6389822.153 290.2750551                                        |
| RE DISCCART | 619538.3358 6392473.893 331.2109775                                        |
| RE DISCCART | 618668.9131 6393096.979 321.0440556                                        |
|             | 619509.3551 6394241.719 314.5652635                                        |
|             |                                                                            |
| RE DISCCART | 618915.2495 6394574.998 322.0593182                                        |
| RE DISCCART | 619306.4898 6395212.574 317.553826                                         |
| RE DISCCART | 618422.5767 6395125.632 346.9611878                                        |
|             | 618509.5189 6395980.564 310.6412671                                        |
|             |                                                                            |
| RE DISCCART | 619697.73 6396226.901 310.0558869                                          |
| RE DISCCART | 619567.3166 6397154.285 307.4231185                                        |
|             | 618784.8361 6396980.4 301.696722                                           |
|             |                                                                            |
| RE DISCCART |                                                                            |
| RE DISCCART | 617799.4904 6398530.871 298.5541184                                        |
|             | 619291.9994 6398443.929 304.3847155                                        |
|             |                                                                            |
| RE DISCCART | 618495.0286 6398052.689 299.4455238                                        |
| RE DISCCART |                                                                            |
| RE DISCCART | 618089.298 6397922.275 302.0496574                                         |
| RE DISCCART |                                                                            |
|             |                                                                            |
| RE DISCCART |                                                                            |
| RE DISCCART | 618799.3265 6399269.88 301.404335                                          |
| RE DISCCART | 618263.1825 6398849.659 297.688753                                         |
| RE DISCCART |                                                                            |
|             |                                                                            |
|             | 616756.1831 6399182.938 290.1917192                                        |
| RE DISCCART |                                                                            |
|             | 618422.5767 6399704.592 298.2153998                                        |
| RE DISCCART | 618422.5767 6399704.592 298.2153998<br>616814.1446 6399661.121 291.3833108 |
|             | 616814.1446 6399661.121 291.3833108                                        |
| RE DISCCART | 616814.1446 6399661.121 291.3833108<br>616278.0006 6398936.602 289.026002  |
| RE DISCCART | 616814.1446 6399661.121 291.3833108                                        |

| RE DISCCART 615683.8951 6399298.861 299.6646777<br>RE DISCCART 61326.655 6398675.775 287.1572367<br>RE DISCCART 614626.0975 6399681.121 286.9848908<br>RE DISCCART 614133.4246 6398777.207 280.3034906<br>RE DISCCART 614133.4246 6398777.207 280.3034906<br>RE DISCCART 614133.4246 6398777.207 280.3034906<br>RE DISCCART 614130.788 63990516.217 76.6689196<br>RE DISCCART 613104.6077 6399052.525 273.0898271<br>RE DISCCART 612104.7716 6399675.611 270.7636058<br>RE DISCCART 611210.7716 6399675.611 270.7636058<br>RE DISCCART 611217.79 639849.659 270.082861<br>RE DISCCART 61015.1279 6398690.101 268.2875829<br>RE DISCCART 610351.4358 6399559.688 265.91949<br>RE DISCCART 610473.0894 6398936.602 265.269106<br>RE DISCCART 610470.61471 6398458.419 265.8549455<br>RE DISCCART 610467.3588 6397212.247 262.326412<br>RE DISCCART 610467.3588 6397212.247 262.326412<br>RE DISCCART 610467.3588 6397212.247 262.326412<br>RE DISCCART 612255.7039 6398328.006 273.3069313<br>RE DISCCART 612255.87039 6398328.006 273.3069313<br>RE DISCCART 612255.856 397849.823 272.9675378<br>RE DISCCART 61403.0112 6398458.419 262.9147343<br>RE DISCCART 61403.0112 6398458.419 262.9147343<br>RE DISCCART 61423.2322 6380675.775 274.326136<br>RE DISCCART 61423.2322 638023.708 281.0502209<br>RE DISCCART 616176.568 6398139.631 288.1699<br>RE DISCCART 616176.568 6398139.631 288.1699<br>RE DISCCART 616176.568 6398139.631 288.1699<br>RE DISCCART 616178.665 6397922.275 287.227511<br>RE DISCCART 61618.6055 6397622.275 287.227511<br>RE DISCCART 61618.6055 6397422.275 287.227511<br>RE DISCCART 61618.6055 6397422.275 287.227511<br>RE DISCCART 613887.0882 6394621.334 271.185794<br>RE DISCCART 613887.0882 6394621.334 271.185794<br>RE DISCCART 613887.0882 6394231.527 771.1940254<br>RE DISCCART 61387.0281 63912.902 264.54584367<br>RE DISCCART 613887.0882 6394231.527 771.1940254<br>RE DISCCART 61323.0211 6394061.334 269.630271<br>RE DISCCART 61323.0211 6394061.334 269.630271<br>RE DISCCART 61323.0211 6394301.924 264.5864307<br>RE DISCCART 61325.0211 6394301.924 264.58659<br>RE DISCCART 61357.777 6394637.4277.13452659<br>RE DISCCART 61357.777 6393637.577 771.345825       |     |          | C1 E CO 2 0 0 E 1 |                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------|-------------------|-------------------------|
| RE DISCCART 614626.0975 6399661.121 286.984808<br>RE DISCCART 61413.037 6399081.505 277.8492595<br>RE DISCCART 614133.4246 6398777.207 280.3034906<br>RE DISCCART 614133.4246 6398777.207 280.3034906<br>RE DISCCART 611410.0786 6399052.525 273.0898271<br>RE DISCCART 612104.0716 6399052.525 273.0898271<br>RE DISCCART 612104.0716 6399052.525 273.0898271<br>RE DISCCART 612104.0716 6399052.525 273.0898271<br>RE DISCCART 612104.7116 6399054.0.9271.7185006<br>RE DISCCART 611219.17139 6398849.659 270.082861<br>RE DISCCART 61015.1279 6399050.101 268.2875829<br>RE DISCCART 61087.0894 6398936.02 265.269106<br>RE DISCCART 61087.0894 6398936.02 265.269106<br>RE DISCCART 61087.0894 6398936.02 265.269106<br>RE DISCCART 610467.3588 6397212.247 262.326412<br>RE DISCCART 61026.4252 6397661.448 272<br>RE DISCCART 61209.2121 2397661.448 272<br>RE DISCCART 61259.7039 639828.006 273.3069313<br>RE DISCCART 61225.8156 637867.75 274.326136<br>RE DISCCART 61225.8156 6378617.5 274.326136<br>RE DISCCART 61225.8156 6378617.75 274.326136<br>RE DISCCART 61225.8156 637849.823 272.9675378<br>RE DISCCART 61403.0112 6398458.419 282.9147343<br>RE DISCCART 61403.0112 6398458.419 282.9147343<br>RE DISCCART 61403.012 6398458.19 282.9147343<br>RE DISCCART 61475.568 6398171.477 79.1499018<br>RE DISCCART 61476.568 6398139.631 288.16199<br>RE DISCCART 616770.6735 6398395.967 292.7352839<br>RE DISCCART 616770.6735 6398395.967 292.7352839<br>RE DISCCART 616770.6735 6398385.967 292.7352839<br>RE DISCCART 61618.6065 6397922.275 287.227511<br>RE DISCCART 61618.6065 6397922.275 287.227511<br>RE DISCCART 61653.3178 639501.89 289.902994<br>RE DISCCART 61382.9126 6394531.527 771.194054<br>RE DISCCART 61382.9126 6394531.527 771.94757<br>RE DISCCART 61393.0211 6394403.974 280.980271<br>RE DISCCART 61393.0211 6394403.974 280.980271<br>RE DISCCART 61325.0211 6394342.133 269.63377<br>RE DISCCART 61325.0216 639457.757      |     |          |                   |                         |
| <pre>NE DISCCART 613640.7517 6399081.505 277.8492595 RE DISCCART 614713.0397 6399052.525 2283.982009 RE DISCCART 614133.4246 6398777.207 280.3034906 RE DISCCART 613146.0778 639952.525 273.0898271 RE DISCCART 612104.0716 6399675.511 270.7636058 RE DISCCART 612104.0716 6399675.511 270.7636058 RE DISCCART 612104.716 6399675.511 270.7636058 RE DISCCART 612104.716 6399675.511 270.7636058 RE DISCCART 61021.4579 6399690.101 268.287529 RE DISCCART 610815.1279 6398649.559 270.082861 RE DISCCART 610815.1279 6398690.559 270.082861 RE DISCCART 610815.1279 6398693.602 265.269106 RE DISCCART 610873.0894 6398936.602 265.269106 RE DISCCART 61078.1471 6398458.419 265.8549455 ED ISCCART 61078.1471 6398458.419 265.8549455 ED ISCCART 61226.4252 6397661.448 272 RE DISCCART 612626.4252 6397661.448 272 RE DISCCART 61275.8386 6398757.75 274.326136 RE DISCCART 61275.8386 6398757.75 274.326136 RE DISCCART 61275.8386 6398757.75 274.326136 RE DISCCART 61408.7418 6398371.477 279.47499018 RE DISCCART 61423.2222 6398023.708 281.0502309 ED ISCCART 61475.6786 6398138.612 276.942255 RE DISCCART 61677.673 6398185.967 292.7352839 RE DISCCART 616770.6735 6398385.967 292.7352839 RE DISCCART 616170.6735 6398385.967 292.7352839 RE DISCCART 61618.6065 639722.275 287.227511 RE DISCCART 61618.0065 639722.75 287.227511 RE DISCCART 61323.0211 6334632.312 299.913133 RE DISCCART 61323.0211 6334632.322 299.93133 RE DISCCART 61323.0211 6334963.238 269.6794747 RE DISCCART 61323.0211 6394461.387 269.639071 RE DISCCART 61524.3371 6398431.332 21.185794 RE DISCCART 61524.2376 639431.372 771.1940254 RE DISCCART 61323.0211 6394461.387 269.639071 RE DISCCART 61323.0211 6394461.338 269.6794747 RE DISCCART 61323.0211 6394461.338 269.6794747 RE DISCCART 61529.276 5393443.352 269.639674 RE DISCCART 61529.276 5393443.352 277.7455559 RE DISCCART 61529.276 5393443.352 277.7455559 RE DISCCART 61529.276 5393443.352 277.7455559 RE DISCCART 6152</pre>                                                                                     | RE  | DISCCART | 615321.6356       | 6398675.775 287.1572367 |
| RE         DISCCART         61413.0397         6399052.525         283.982009           RE         DISCCART         614336.2899         6399284.371         281.1746295           RE         DISCCART         613148.0788         6399516.217         270.6689196           RE         DISCCART         613148.0788         6399055.512         270.082607           RE         DISCCART         611670.0602         6399240.9         271.7185096           RE         DISCCART         611671.7139         6398690.323         268.3231514           RE         DISCCART         610815.1279         6399690.101         268.287529           RE         DISCCART         610815.1279         6398498.419         265.26100           RE         DISCCART         610786.1471         6398458.419         265.26100           RE         DISCCART         61046.13588         6397212.247         262.326412           RE         DISCCART         61265.4252         6397641.448         272           RE         DISCCART         61295.7039         639828.006         273.3069313           RE         DISCCART         61403.0112         6398458.419         262.147338           RE         DISCCART         61407.7186         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RE  | DISCCART | 614626.0975       | 6399661.121 286.9848908 |
| RE         DISCCART         61413.0397         6399052.525         283.982009           RE         DISCCART         614336.2899         6399284.371         281.1746295           RE         DISCCART         613148.0788         6399516.217         270.6689196           RE         DISCCART         613148.0788         6399055.512         270.082607           RE         DISCCART         611670.0602         6399240.9         271.7185096           RE         DISCCART         611671.7139         6398690.323         268.3231514           RE         DISCCART         610815.1279         6399690.101         268.287529           RE         DISCCART         610815.1279         6398498.419         265.26100           RE         DISCCART         610786.1471         6398458.419         265.26100           RE         DISCCART         61046.13588         6397212.247         262.326412           RE         DISCCART         61265.4252         6397641.448         272           RE         DISCCART         61295.7039         639828.006         273.3069313           RE         DISCCART         61403.0112         6398458.419         262.147338           RE         DISCCART         61407.7186         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RE  | DISCCART | 613640.7517       | 6399081.505 277.8492595 |
| RE DISCCART 614336.2899 6399284.371 281.1746295<br>RE DISCCART 611413.4246 6398777.207 280.3034906<br>RE DISCCART 61140.0786 6399052.525 273.0898271<br>RE DISCCART 611210.7176 6399052.525 273.0898271<br>RE DISCCART 611210.0602 6399620.91271.7185096<br>RE DISCCART 611626.5891 639863.323 268.3235154<br>RE DISCCART 611219.7139 6398849.659 270.082861<br>RE DISCCART 610151.4735 639959.688 265.91949<br>RE DISCCART 610873.0894 6398356.602 265.269106<br>RE DISCCART 610873.0894 6398356.602 265.269106<br>RE DISCCART 610873.0894 6398384.02 270.302812<br>RE DISCCART 610786.1471 6398458.419 265.8549455<br>RE DISCCART 612090.2812 6398183.102 270.902812<br>RE DISCCART 612626.4252 6397661.448 272<br>RE DISCCART 612756.3886 6398757.775 274.326136<br>RE DISCCART 612756.3886 6398757.775 274.326136<br>RE DISCCART 612756.3886 639871.477 279.1499018<br>RE DISCCART 61476.588 639871.477 279.1499018<br>RE DISCCART 614003.0112 6398458.419 262.9147343<br>RE DISCCART 614003.0112 6398458.419 222.9147343<br>RE DISCCART 614003.0112 6398458.419 222.9147343<br>RE DISCCART 614423.222 639023.708 281.053209<br>RE DISCCART 616176.564 6397704.919 275.566748<br>RE DISCCART 616176.564 6397704.919 275.566748<br>RE DISCCART 616176.564 6397704.919 275.566748<br>RE DISCCART 616176.564 6397704.919 275.566748<br>RE DISCCART 616176.568 6398139.631 288.1199<br>RE DISCCART 616176.568 6398139.631 288.1199<br>RE DISCCART 616524.3371 639850.967 292.732839<br>RE DISCCART 616524.3371 639850.967 292.732839<br>RE DISCCART 61524.3371 639850.970 292.7352839<br>RE DISCCART 61524.3371 639850.987 289.902994<br>RE DISCCART 61524.3371 639850.987 289.902994<br>RE DISCCART 61535.9211 6394821.334 271.185794<br>RE DISCCART 61387.0882 6394821.334 271.185794<br>RE DISCCART 61325.0211 6394961.334 269.368279<br>RE DISCCART 61325.0211 6394421.334 269.368299<br>RE DISCCART 61325.0211 6394431.327 .771.94778<br>RE DISCCART 61325.0211 6394431.327 .771.94778<br>RE DISCCART 61535.9223 6394637.257 .771.94778<br>RE DISCCART 61545.3767 6394617.334 278.346426<br>RE DISCCART 61545.3767 6394617.334 278.346426<br>RE DISCCART 61545.7777 639263.287 274.755559<br>RE DISCCART 61533.     | RE  |          | 614713.0397       | 6399052.525 283.982009  |
| RE DISCCART 614133.4246 6398777.207 280.3034906<br>RE DISCCART 613146.0788 6399516.217 276.6689196<br>RE DISCCART 6112104.7716 6399675.611 270.7636058<br>RE DISCCART 611210.6077 639975.611 270.7636058<br>RE DISCCART 611210.7139 6398803.323 268.323154<br>RE DISCCART 6112191.7139 6398803.323 268.323154<br>RE DISCCART 610815.1279 6399690.101 268.2875829<br>RE DISCCART 61087.14358 6399559.688 265.91949<br>RE DISCCART 61078.1435 6399659.0101 268.2875829<br>RE DISCCART 61078.14358 6399559.688 265.91949<br>RE DISCCART 61078.14358 63998512.247 262.326412<br>RE DISCCART 61262.4252 639761.448 272<br>RE DISCCART 61275.6386 6398675.775 274.326136<br>RE DISCCART 61275.6386 6398675.775 274.326136<br>RE DISCCART 61275.6386 6398675.775 274.326136<br>RE DISCCART 61275.6386 6398675.775 274.326137<br>RE DISCCART 61275.6386 6398675.775 274.326137<br>RE DISCCART 61423.2322 6398023.708 281.0503209<br>RE DISCCART 614428.722<br>CE DISCCART 614408.7418 639871.477 279.1499018<br>RE DISCCART 614428.722<br>CE DISCCART 614423.2322 6398023.708 281.0503209<br>RE DISCCART 61375.6748 639774.919 275.566748<br>RE DISCCART 61375.6748 639774.919 275.566748<br>RE DISCCART 61376.6748 639774.919 275.566748<br>RE DISCCART 616176.568 6398139.631 288.16199<br>RE DISCCART 616176.568 6398139.631 288.16199<br>RE DISCCART 61618.6065 6397922.275 287.227511<br>RE DISCCART 61618.6056 397922.757 287.227511<br>RE DISCCART 61618.0656 397922.757 287.227511<br>RE DISCCART 61387.0882 6394621.334 271.158794<br>RE DISCCART 61387.0882 6394621.334 271.158794<br>RE DISCCART 61387.0882 6394621.334 271.158794<br>RE DISCCART 61387.0882 6394621.334 271.158794<br>RE DISCCART 61382.1266 639531.527 771.194765<br>RE DISCCART 61385.0211 639462.334 269.360271<br>RE DISCCART 61325.0211 639462.334 269.360271<br>RE DISCCART 61325.0211 639462.334 273.3464926<br>RE DISCCART 61362.3768 639429.68 267.0016761<br>RE DISCCART 61532.3768 639429.768 267.0016761<br>RE DISCCART 61532.276 6394631.334 271.15878<br>RE DISCCART 61535.2777 639461.334 269.363774<br>RE DISCCART 61587.7797 639263.287 774.955599<br>RE DISCCART 61587.7797 639263.287 774.955599<br>RE DISCCART 61535.4345 6393   |     |          |                   |                         |
| <ul> <li>NE DISCCART 613148.0788 639516.217 276.6689196</li> <li>RE DISCCART 613104.6077 6399052.525 273.0898271</li> <li>RE DISCCART 611670.0602 6399240.9 271.7185096</li> <li>RE DISCCART 611670.0602 6399240.9 271.7185096</li> <li>RE DISCCART 611626.5891 6398649.659 270.082861</li> <li>RE DISCCART 610815.1279 6399690.101 268.2875829</li> <li>RE DISCCART 610815.1279 6399690.101 268.2875829</li> <li>RE DISCCART 610873.0894 6398936.602 265.269106</li> <li>RE DISCCART 610786.1471 6398458.419 265.8549455</li> <li>RE DISCCART 610786.1471 6398458.419 265.8549455</li> <li>RE DISCCART 612626.4252 6397661.448 272</li> <li>RE DISCCART 612626.4252 6397641.448 272</li> <li>RE DISCCART 612959.7039 6398328.006 273.3069313</li> <li>RE DISCCART 61275.8386 639675.775 274.326136</li> <li>RE DISCCART 61275.8386 6398675.775 274.326136</li> <li>RE DISCCART 61403.0112 6398458.419 282.9147343</li> <li>RE DISCCART 614423.2322 6398023.708 281.0503209</li> <li>RE DISCCART 614423.2322 6398023.708 281.0503209</li> <li>RE DISCCART 616770.6735 6398139.611 288.1619</li> <li>RE DISCCART 616770.6735 6398385.967 292.7352839</li> <li>RE DISCCART 616170.6735 6398385.967 292.7352839</li> <li>RE DISCCART 61618.6065 6397922.275 287.227511</li> <li>RE DISCCART 61618.6065 6397922.275 287.227511</li> <li>RE DISCCART 61618.0636 639139.21 29.913133</li> <li>RE DISCCART 61618.0636 6394521.334 271.185794</li> <li>RE DISCCART 61325.0211 6394601.334 269.6390271</li> <li>RE DISCCART 61325.0211 6394601.334 269.6390271</li> <li>RE DISCCART 61325.0211 6394601.334 269.6390271</li> <li>RE DISCCART 61532.0211 6394601.334 269.6390271</li> <li>RE DISCCART 61535.0621 6394397.257 777.194758</li> <li>RE DISCCART 61535.0779 6393314.335 2474.7555599</li> <li>RE DISCCART 61</li></ul>                                                                                                                                                                                                                             |     |          |                   |                         |
| RE DISCCART 613104.6077 6399052.525 273.0898271<br>RE DISCCART 612104.7716 6399675.611 270.7636058<br>RE DISCCART 611626.5891 6398603.323 268.3235154<br>RE DISCCART 611626.5891 6398603.323 268.3235154<br>RE DISCCART 610815.1279 6399690.101 268.2875829<br>RE DISCCART 610815.1279 6399690.101 268.2875829<br>RE DISCCART 610815.1279 6399690.101 265.269106<br>RE DISCCART 61078.01471 6398458.419 265.8549455<br>RE DISCCART 61078.01471 6398458.419 265.8549455<br>RE DISCCART 61078.01471 6398458.419 267.84455<br>RE DISCCART 61290.2812 6398183.102 270.902812<br>RE DISCCART 61290.2812 6398183.102 270.902812<br>RE DISCCART 61295.7039 6398328.006 273.3069313<br>RE DISCCART 612756.8386 6398675.775 274.326136<br>RE DISCCART 612756.8386 6398675.775 274.326136<br>RE DISCCART 612756.8386 6398675.775 274.326136<br>RE DISCCART 612756.8386 6398675.775 274.326136<br>RE DISCCART 61403.0112 6398458.419 282.9147343<br>RE DISCCART 61408.7418 6398131.477 279.1499018<br>RE DISCCART 61408.7418 6398131.477 279.1499018<br>RE DISCCART 61476.568 6398139.631 288.16199<br>RE DISCCART 616176.568 6398139.631 289.9029494<br>RE DISCCART 61618.6065 6397524.750 289.533178<br>RE DISCCART 61618.6065 639754.500 299.452584<br>RE DISCCART 61618.6065 639754.500 299.452584<br>RE DISCCART 613827.0826 639421.334 271.185794<br>RE DISCCART 613827.016 6394531.527 271.1940254<br>RE DISCCART 613827.016 6394531.527 271.1940254<br>RE DISCCART 61325.0211 6394501.334 269.286299<br>RE DISCCART 61325.0211 639462.334 269.6390271<br>RE DISCCART 61325.0216 6394397.257 277.194758<br>RE DISCCART 61362.768 639439.7257 277.194758<br>RE DISCCART 613640.7517 6394374.532 280<br>RE DISCCART 61587.7797 6392637.277 77.194758<br>RE DISCCART 61587.277 6394077.834 278.546936<br>RE DISCCART 61587.7797 6392637.277 271.94758<br>RE DISCCART 61587.7797 639363.287 274.7055825<br>RE DISCCART 61599.2123 6394397.257 277.194758<br>RE DISCCART 61599.2123 6394393.918 277.655584<br>RE DISCCART 615     |     |          |                   |                         |
| RE DISCCART 612104.7716 6399675.611 270.7636058<br>RE DISCCART 611670.0602 6399240.9 271.7185096<br>RE DISCCART 6126.5891 6398603.23 268.323154<br>RE DISCCART 61031.4358 6399559.688 265.91949<br>RE DISCCART 610873.0894 6398393.602 265.269106<br>RE DISCCART 610873.0894 6398393.602 265.269106<br>RE DISCCART 61073.0894 6398393.602 265.269106<br>RE DISCCART 610467.1358 6397212.247 262.326412<br>RE DISCCART 612452.6398183.102 270.902812<br>RE DISCCART 61266.4252 6397661.448 272<br>RE DISCCART 61265.85469455<br>RE DISCCART 61265.85469455<br>RE DISCCART 61275.8386 6397212.247 262.326412<br>RE DISCCART 61275.8386 639875.775 274.326136<br>RE DISCCART 61235.185 6397849.823 272.9675378<br>RE DISCCART 61403.0112 6398458.419 282.9147343<br>RE DISCCART 61403.0112 6398458.419 282.9147343<br>RE DISCCART 61400.7418 6398371.477 279.149018<br>RE DISCCART 61407.418 6398371.477 279.149018<br>RE DISCCART 61407.658 6398139.631 281.0503209<br>RE DISCCART 61470.5735 6398385.967 292.7352839<br>RE DISCCART 616770.6735 6398023.708 281.0503209<br>RE DISCCART 61671.0598 639754.506 289.533178<br>RE DISCCART 61671.0598 6398023.708 297.4542584<br>RE DISCCART 616118.6065 639722.775 287.227511<br>RE DISCCART 61653.3178 6397574.506 289.533178<br>RE DISCCART 61653.3178 6397574.506 289.533178<br>RE DISCCART 61618.6065 6394521.372 771.1940254<br>RE DISCCART 61624.3371 6398501.89 289.902294<br>RE DISCCART 61328.70282 639421.334 269.83929<br>RE DISCCART 61325.0211 639466.338 260.739747<br>RE DISCCART 61325.0211 6394607.338 260.7367147<br>RE DISCCART 61325.0211 6394507.377 277.194758<br>RE DISCCART 61325.0211 6394396.238 260.730714<br>RE DISCCART 61325.0211 639429.1334 269.380271<br>RE DISCCART 61325.0211 639429.282<br>RE DISCCART 61325.0211 639429.282<br>RE DISCCART 61325.0211 639429.282<br>RE DISCCART 61535.1148 639373.257 277.194758<br>RE DISCCART 61535.1235 6394037.257 277.194758<br>RE DISCCART 61522.77 6394067.337 270.055825<br>RE DISCCART 61522.77 6393613.921 277.0655825<br>RE DISCCART 61529.7439 639473.257 277.194758<br>RE DISCCART 61555.5487 6393632.104 275.44257<br>RE DISCCART 61555.5487 6393632.104 275.44257<br>RE DISCCART 61529.2 | RE  | DISCCART | 613148.0788       | 6399516.217 276.6689196 |
| RE DISCCART 611670.0602 6399240.9 271.7185096<br>RE DISCCART 611626.5891 6398603.323 268.3235154<br>RE DISCCART 610815.1279 6399690.101 268.2875829<br>RE DISCCART 610815.1279 6399690.101 268.2875829<br>RE DISCCART 610815.1279 6399690.602 265.269106<br>RE DISCCART 610786.1471 6398458.419 265.8549455<br>RE DISCCART 610786.1471 6398458.419 265.8549455<br>RE DISCCART 612090.2812 6398183.102 270.902812<br>RE DISCCART 612626.4252 6397661.448 272<br>RE DISCCART 612626.4252 6397661.448 272<br>RE DISCCART 612756.3386 6398675.775 274.326136<br>RE DISCCART 612756.3386 6398675.775 274.326136<br>RE DISCCART 612235.185 6397849.823 272.9675378<br>RE DISCCART 614403.0112 6398458.419 282.9147343<br>RE DISCCART 614423.2322 6398023.708 297.94542584<br>RE DISCCART 614423.2322 6398032.708 297.4542584<br>RE DISCCART 61442.3223 6398139.631 288.16199<br>RE DISCCART 616176.568 6398139.631 288.16199<br>RE DISCCART 616176.568 6398139.631 288.16199<br>RE DISCCART 616176.568 6398139.631 288.16199<br>RE DISCCART 616176.568 6398139.631 288.16199<br>RE DISCCART 616170.6735 6398385.967 292.7352839<br>RE DISCCART 61618.6056 539722.75 287.227511<br>RE DISCCART 61618.6056 539722.75 287.22751<br>RE DISCCART 61618.6056 539722.75 287.22751<br>RE DISCCART 61618.6056 6393129.202 264.4548367<br>RE DISCCART 61618.6056 639421.334 271.185794<br>RE DISCCART 616324.3371 6395501.89 289.9902994<br>RE DISCCART 61387.0826 6394531.527 271.1940254<br>RE DISCCART 61387.0826 6394531.327 271.1940254<br>RE DISCCART 61325.0211 6394621.334 269.6390271<br>RE DISCCART 61325.0211 6394621.334 269.6390271<br>RE DISCCART 61325.0211 6394430.132 267.3671044<br>RE DISCCART 61325.0211 6394637.257 277.194775<br>RE DISCCART 61362.727 6394603.978 269.6390271<br>RE DISCCART 61362.727 6394603.978 269.6390271<br>RE DISCCART 61365.5103 6394737.257 277.194758<br>RE DISCCART 61365.5103 6394734.392 280<br>RE DISCCART 61535.922.13 639430.974 278.3464926<br>RE DISCCART 61545.5487 639367.594 278.3464926<br>RE DISCCART 61557.777 6392631.4.335 278.376492<br>RE DISCCART 61557.7777 6392631.4.335 278.376492<br>RE DISCCART 61545.4345 639330.9018 270.361451<br>RE DISCCART 61537.6744     | RE  | DISCCART | 613104.6077       | 6399052.525 273.0898271 |
| RE DISCCART 611626.5891 6398603.323 268.3235154<br>RE DISCCART 61211.7139 639849.659 270.082861<br>RE DISCCART 610815.1279 6399690.101 268.2875829<br>RE DISCCART 610736.14358 6399559.688 265.91949<br>RE DISCCART 610786.1471 6398458.419 265.8549455<br>RE DISCCART 610786.1471 6398458.419 265.8549455<br>RE DISCCART 612090.2812 6398183.102 270.902812<br>RE DISCCART 612090.2812 6398183.102 270.902812<br>RE DISCCART 612256.4252 6397661.448 272<br>RE DISCCART 612756.3836 6398675.775 274.326136<br>RE DISCCART 612255.185 6397849.823 272.9675378<br>RE DISCCART 61403.0112 6398358.419 282.9147343<br>RE DISCCART 61403.2112 6398371.477 279.149018<br>RE DISCCART 61403.212 6398108.2172 276.9402189<br>RE DISCCART 61403.212 6398168.612 276.942259<br>RE DISCCART 61470.6735 6398385.967 292.7352839<br>RE DISCCART 616176.568 6398133.611 288.16199<br>RE DISCCART 616170.6735 6398385.967 292.7352839<br>RE DISCCART 616170.6735 6398385.967 292.7352839<br>RE DISCCART 616170.6735 6398385.967 292.7352839<br>RE DISCCART 61618.6065 639722.275 287.227511<br>RE DISCCART 61618.6056 639752.275 287.227511<br>RE DISCCART 61618.6056 639183.921 259.9131303<br>RE DISCCART 61618.6056 639183.291 259.9131303<br>RE DISCCART 61242.3482 6393212.302 264.4548367<br>RE DISCCART 613897.0882 639421.334 271.185794<br>RE DISCCART 61387.0882 639421.334 271.185794<br>RE DISCCART 61325.0211 639466.238 269.6794747<br>RE DISCCART 61325.0211 639466.238 269.6794747<br>RE DISCCART 61325.0211 6394961.133 267.3671044<br>RE DISCCART 61325.0211 6394401.132 267.3671044<br>RE DISCCART 61325.0211 6394307.132 267.457186<br>RE DISCCART 61635.9621 6394371.327 277.1940254<br>RE DISCCART 616325.127 6394371.477<br>RE DISCCART 61635.9621 6394371.327 277.194578<br>RE DISCCART 61635.9621 6394373.922 80<br>RE DISCCART 61635.9621 6394373.922 80<br>RE DISCCART 61635.9621 6394330.918 270.361451<br>RE DISCCART 61635.7779 6395314.133 267.367164<br>RE DISCCART 61537.277 6393314.335 268.3615621<br>RE DISCCART 61537.277 6393314.335 268.3615621<br>RE DISCCART 61537.276 6393348.219 266.38743131<br>RE DISCCART 61537.277 6393314.335 268.3615621<br>RE DISCCART 61537.4576 6393334.335 26     | RE  | DISCCART | 612104.7716       | 6399675.611 270.7636058 |
| RE DISCCART 611626.5891 6398603.323 268.3235154<br>RE DISCCART 61211.7139 639849.659 270.082861<br>RE DISCCART 610815.1279 6399690.101 268.2875829<br>RE DISCCART 610736.14358 6399559.688 265.91949<br>RE DISCCART 610786.1471 6398458.419 265.8549455<br>RE DISCCART 610786.1471 6398458.419 265.8549455<br>RE DISCCART 612090.2812 6398183.102 270.902812<br>RE DISCCART 612090.2812 6398183.102 270.902812<br>RE DISCCART 612256.4252 6397661.448 272<br>RE DISCCART 612756.3836 6398675.775 274.326136<br>RE DISCCART 612255.185 6397849.823 272.9675378<br>RE DISCCART 61403.0112 6398358.419 282.9147343<br>RE DISCCART 61403.2112 6398371.477 279.149018<br>RE DISCCART 61403.212 6398108.2172 276.9402189<br>RE DISCCART 61403.212 6398168.612 276.942259<br>RE DISCCART 61470.6735 6398385.967 292.7352839<br>RE DISCCART 616176.568 6398133.611 288.16199<br>RE DISCCART 616170.6735 6398385.967 292.7352839<br>RE DISCCART 616170.6735 6398385.967 292.7352839<br>RE DISCCART 616170.6735 6398385.967 292.7352839<br>RE DISCCART 61618.6065 639722.275 287.227511<br>RE DISCCART 61618.6056 639752.275 287.227511<br>RE DISCCART 61618.6056 639183.921 259.9131303<br>RE DISCCART 61618.6056 639183.291 259.9131303<br>RE DISCCART 61242.3482 6393212.302 264.4548367<br>RE DISCCART 613897.0882 639421.334 271.185794<br>RE DISCCART 61387.0882 639421.334 271.185794<br>RE DISCCART 61325.0211 639466.238 269.6794747<br>RE DISCCART 61325.0211 639466.238 269.6794747<br>RE DISCCART 61325.0211 6394961.133 267.3671044<br>RE DISCCART 61325.0211 6394401.132 267.3671044<br>RE DISCCART 61325.0211 6394307.132 267.457186<br>RE DISCCART 61635.9621 6394371.327 277.1940254<br>RE DISCCART 616325.127 6394371.477<br>RE DISCCART 61635.9621 6394371.327 277.194578<br>RE DISCCART 61635.9621 6394373.922 80<br>RE DISCCART 61635.9621 6394373.922 80<br>RE DISCCART 61635.9621 6394330.918 270.361451<br>RE DISCCART 61635.7779 6395314.133 267.367164<br>RE DISCCART 61537.277 6393314.335 268.3615621<br>RE DISCCART 61537.277 6393314.335 268.3615621<br>RE DISCCART 61537.276 6393348.219 266.38743131<br>RE DISCCART 61537.277 6393314.335 268.3615621<br>RE DISCCART 61537.4576 6393334.335 26     | RE  | DISCCART | 611670.0602       | 6399240.9 271.7185096   |
| RE DISCCART 612191.7139 639849.659 270.082861<br>RE DISCCART 61035.1279 6399690.101 268.2875829<br>RE DISCCART 610373.0894 6398395.602 265.269109<br>RE DISCCART 61073.0894 6398393.602 265.269106<br>RE DISCCART 610467.3588 6397212.247 265.8549455<br>RE DISCCART 612626.4252 6397661.448 272<br>RE DISCCART 612626.4252 6397661.448 272<br>RE DISCCART 61265.854965<br>RE DISCCART 61265.854965<br>RE DISCCART 61265.854965<br>RE DISCCART 61265.854965<br>RE DISCCART 61275.888 639721.247 270.961313<br>RE DISCCART 61275.885 6397849.823 272.9675378<br>RE DISCCART 614003.0112 6398458.419 282.9147343<br>RE DISCCART 614403.7112 6398458.419 282.9147343<br>RE DISCCART 614408.7418 6398710.477 791.499018<br>RE DISCCART 61475.658 6398139.631 288.1619<br>RE DISCCART 616770.6735 6398385.967 292.7352839<br>RE DISCCART 616770.6735 6398385.967 292.7352839<br>RE DISCCART 616770.6735 6398385.967 292.7352839<br>RE DISCCART 616770.6735 6398385.967 292.7352839<br>RE DISCCART 616710.6736 6399139.631 288.1619<br>RE DISCCART 616710.6736 63971922.275 287.227511<br>RE DISCCART 616118.6065 6397122.275 287.227511<br>RE DISCCART 616524.3371 6398501.89 289.9902994<br>RE DISCCART 616524.3371 6398501.89 289.990294<br>RE DISCCART 613829.1266 6394531.527 271.1940254<br>RE DISCCART 613829.1266 6394531.527 271.1940254<br>RE DISCCART 61325.0211 6394961.334 271.185794<br>RE DISCCART 61325.0211 6394961.334 269.6794747<br>RE DISCCART 61325.0211 6394961.334 269.6794747<br>RE DISCCART 61325.0211 6394961.334 269.286299<br>RE DISCCART 61325.0211 6394967.334 269.286299<br>RE DISCCART 61325.0211 6394371.32 27.71.94758<br>RE DISCCART 61350.2376 639429.968 267.0016761<br>RE DISCCART 61353.021 6394371.32 27.71.94758<br>RE DISCCART 61362.277 6394314.171 268.6331878<br>RE DISCCART 61593.2156 6394339.21 277.055825<br>RE DISCCART 61635.103 6394734.392 280<br>RE DISCCART 61635.103 6394734.392 280<br>RE DISCCART 61635.227 639407.834 278.3464926<br>RE DISCCART 61587.277 6396314.335 277.194758<br>RE DISCCART 61587.277 6396314.335 277.194758<br>RE DISCCART 61587.277 6396314.335 277.194758<br>RE DISCCART 61599.2123 639314.335 268.3615621<br>RE DISCCART 61537.277 639633 |     |          |                   |                         |
| RE DISCCART 610815.1279 6399690.101 268.2875829<br>RE DISCCART 610873.0894 639959.688 265.91949<br>RE DISCCART 610786.1471 6398458.419 265.8549455<br>RE DISCCART 612090.2812 6398138.102 270.902812<br>RE DISCCART 612090.2812 6398183.102 270.902812<br>RE DISCCART 612050.2812 6398183.102 270.902812<br>RE DISCCART 612959.7039 6398328.006 273.3069313<br>RE DISCCART 612959.7039 6398328.006 273.3069313<br>RE DISCCART 612756.3836 6398675.775 274.326136<br>RE DISCCART 61235.185 6397849.823 272.9075378<br>RE DISCCART 614403.0112 6398458.419 282.9147343<br>RE DISCCART 614408.7418 6398371.477 279.1499018<br>RE DISCCART 614408.7418 6398371.477 279.1499018<br>RE DISCCART 614423.2322 6398023.708 281.0503209<br>RE DISCCART 616176.568 6398139.631 288.16199<br>RE DISCCART 616176.568 6398139.631 288.16199<br>RE DISCCART 616170.568 6398139.631 288.16199<br>RE DISCCART 616770.673 639835.967 292.7352839<br>RE DISCCART 61670.568 6398139.631 288.16199<br>RE DISCCART 61653.3178 6397574.506 289.533178<br>RE DISCCART 61653.3178 6397574.506 289.533178<br>RE DISCCART 61653.3178 6397574.506 289.533178<br>RE DISCCART 61652.43371 6398501.89 229.990294<br>RE DISCCART 61652.43371 6398501.89 229.990294<br>RE DISCCART 61652.43371 639501.89 229.990294<br>RE DISCCART 61326.2613 639509.709 271.47474<br>RE DISCCART 61325.0211 6394621.334 271.185794<br>RE DISCCART 61325.0211 6394621.334 269.6639271<br>RE DISCCART 61325.0211 6394631.352 771.0194758<br>RE DISCCART 61324.0019 6394401.113 267.3671044<br>RE DISCCART 61325.0211 6394397.257 277.194758<br>RE DISCCART 61539.2315 6394397.257 277.194758<br>RE DISCCART 61539.6216 6394531.527 777.055859<br>RE DISCCART 61590.2315 6394397.257 277.194758<br>RE DISCCART 61590.2315 6394397.257 277.194758<br>RE DISCCART 61593.2315 6394397.257 277.154758<br>RE DISCCART 61593.2315 6394397.257 277.055859<br>RE DISCCART 61593.2216 6394597.268 28.1433564<br>RE DISCCART 61593.2216 6394597.268 28.1433564<br>RE DISCCART 61593.2216 6394397.256 28.143357<br>RE DISCCART 61593.227 639366.2104 275.442357<br>RE DISCCART 61593.227 639366.2104 275.442357<br>RE DISCCART 61597.277 639367.594 279.681927<br>RE DISCCART 6139     |     |          |                   |                         |
| RE DISCCART 610351.4358 6399559.688 265.91949<br>RE DISCCART 61073.0894 6398936.602 265.269106<br>RE DISCCART 610467.3588 6397212.247 262.326412<br>RE DISCCART 612900.2812 6398183.102 270.902812<br>RE DISCCART 61295.7039 6398328.006 273.3069313<br>RE DISCCART 612756.8386 6398675.775 274.326136<br>RE DISCCART 612756.8386 6398675.775 274.326136<br>RE DISCCART 61403.0112 6398458.419 262.9147343<br>RE DISCCART 61408.7418 6398371.477 279.1499018<br>RE DISCCART 614423.2322 6398023.708 281.0503209<br>RE DISCCART 614423.2322 6398023.708 281.0503209<br>RE DISCCART 614423.2322 6398023.708 281.0503209<br>RE DISCCART 61476.586 6398139.612 276.9422259<br>RE DISCCART 616770.6735 6398385.967 292.7352839<br>RE DISCCART 616118.6065 639792.275 287.227511<br>RE DISCCART 616524.3371 6398501.89 289.990294<br>RE DISCCART 616524.3371 6398501.89 289.990294<br>RE DISCCART 61624.3371 6398501.89 289.990294<br>RE DISCCART 612742.3482 639421.334 271.185794<br>RE DISCCART 61325.0211 6394821.334 271.185794<br>RE DISCCART 61325.0211 6394821.334 271.185794<br>RE DISCCART 61325.0211 6394662.38 269.679747<br>RE DISCCART 61325.0211 639461.334 269.6390271<br>RE DISCCART 61325.0211 6394821.334 271.05745<br>RE DISCCART 61325.0211 639481.334 269.6390271<br>RE DISCCART 61325.0211 6394871.334 269.6390271<br>RE DISCCART 61325.0211 6394871.332 280<br>RE DISCCART 61532.777 6394067.834 278.3464926<br>RE DISCCART 61542.3768 6394297.277 7.194758<br>RE DISCCART 61542.3768 6394393.257 277.194758<br>RE DISCCART 61542.3768 6394393.257 277.194758<br>RE DISCCART 615452.3768 6394393.257 277.194758<br>RE DISCCART 615452.776 9394067.834 278.3464926<br>RE DISCCART 615452.776 9394067.834 278.3464926<br>RE DISCCART 615452.776 6393676.594 279.6891927<br>RE DISCCART 615452.776 6393676.594 279.6891927<br>RE DISCCART 615457.777 6392633.267 274.7556599<br>RE DISCCART 615457.777 6392633.267 274.7556599<br>RE DISCCART 61533.2607 6393314.335 271.7149778<br>RE DI     |     |          |                   |                         |
| RE DISCCART 610873.0894 6398936.602 265.269106<br>RE DISCCART 610786.1471 6398458.419 265.8549455<br>RE DISCCART 612090.2812 6398183.102 270.902812<br>RE DISCCART 6122959.7039 63980328.006 273.3069313<br>RE DISCCART 612235.185 6397840.823 272.9675378<br>RE DISCCART 612235.185 6397840.823 272.9675378<br>RE DISCCART 61403.0112 6398458.419 282.9147343<br>RE DISCCART 61403.718 6398371.477 279.1499018<br>RE DISCCART 614423.2322 6398023.708 281.0503209<br>RE DISCCART 614423.2322 6398023.708 281.0503209<br>RE DISCCART 614423.2322 6398023.708 281.0503209<br>RE DISCCART 616170.6736 6398139.631 288.16199<br>RE DISCCART 616170.6736 6398139.631 288.16199<br>RE DISCCART 616170.6735 6398385.967 292.7352839<br>RE DISCCART 616710.7099 6398023.708 297.4542584<br>RE DISCCART 616553.3178 6397574.506 289.533178<br>RE DISCCART 616553.3178 6397574.506 289.533178<br>RE DISCCART 616524.3371 6398139.631 289.902994<br>RE DISCCART 616524.3371 6398501.89 289.902994<br>RE DISCCART 616524.3371 6398501.89 289.902994<br>RE DISCCART 6161242.3482 6394321.392 259.9131303<br>RE DISCCART 61325.0211 6394962.334 269.6794747<br>RE DISCCART 61325.0211 6394966.238 269.6794747<br>RE DISCCART 61325.0211 639497.257 277.1940254<br>RE DISCCART 613264.0019 6394401.113 267.3671044<br>RE DISCCART 613626.2613 639509.709 271.474774<br>RE DISCCART 613640.7517 6394314.171 268.6331878<br>RE DISCCART 613640.7517 6394314.171 268.6331878<br>RE DISCCART 613640.7517 6394314.171 268.6331878<br>RE DISCCART 613640.7517 6394314.171 268.6331878<br>RE DISCCART 61539.02315 639437.257 277.194758<br>RE DISCCART 61539.621 6394431.094 287.5908357<br>RE DISCCART 61567.7797 6392633.267 274.7556599<br>RE DISCCART 61567.7797 6392633.267 274.7556599<br>RE DISCCART 61579.2127 6394067.834 278.3464926<br>RE DISCCART 61535.9621 6393443.35 271.7149778<br>RE DISCCART 61535.9621 6393443.35 271.7149778<br>RE DISCCART 61533.2607 6393314.335 271.7149778<br>RE DISCCART 61335.6214 63       | RE  |          |                   |                         |
| RE DISCCART 610786.1471 6398458.419 265.8549455<br>RE DISCCART 612090.2812 6398183.102 270.902812<br>RE DISCCART 612626.4252 6397661.448 272<br>RE DISCCART 612626.4252 6397661.448 272<br>RE DISCCART 612756.8386 6398675.775 274.326136<br>RE DISCCART 612035.185 6397849.823 272.9675378<br>RE DISCCART 614003.0112 6398458.419 282.9147343<br>RE DISCCART 61403.0112 6398458.419 282.9147343<br>RE DISCCART 614408.7418 6398371.477 279.1499018<br>RE DISCCART 614408.7418 6398371.477 279.1499018<br>RE DISCCART 61472.6478 6397104.919 275.566748<br>RE DISCCART 613727.694 6398168.612 276.9422259<br>RE DISCCART 616170.6735 6398385.967 292.7352839<br>RE DISCCART 616770.6735 6398385.967 292.7352839<br>RE DISCCART 616710.6735 6398385.967 292.7352839<br>RE DISCCART 616710.6735 6398139.631 288.16199<br>RE DISCCART 61653.3178 639754.506 289.533178<br>RE DISCCART 61654.3371 6398501.89 289.9902994<br>RE DISCCART 616524.3371 6398501.89 289.9902994<br>RE DISCCART 61624.3371 6398501.89 289.990294<br>RE DISCCART 616246.361 6393183.921 259.9131303<br>RE DISCCART 61325.0211 6394821.334 271.185794<br>RE DISCCART 613235.0211 6394821.334 269.286299<br>RE DISCCART 613235.0211 6394821.334 269.286299<br>RE DISCCART 613235.0211 6394821.334 269.286299<br>RE DISCCART 613245.0211 6394821.334 269.6390271<br>RE DISCCART 613245.0211 6394397.257 277.194758<br>RE DISCCART 613245.0211 6394397.257 277.194758<br>RE DISCCART 61325.0211 6394397.257 277.194758<br>RE DISCCART 613640.7517 6394314.171 268.6331878<br>RE DISCCART 61545.3766 6394299.68 267.0016761<br>RE DISCCART 61545.3776 6394279.269.282.143354<br>RE DISCCART 61545.9777 639263.287 274.7556599<br>RE DISCCART 61545.9477 6393676.594 279.6891927<br>RE DISCCART 61565.5477 6393676.594 279.6891927<br>RE DISCCART 615625.5487 6393676.594 279.6891927<br>RE DISCCART 61565.5476 6393314.335 274.355659<br>RE DISCCART 61545.2776 6393676.594 279.6891927<br>RE DISCCART 61545.2776 6393676.594 279.6891927<br>RE DISCCART 61539.2612 639314.335 274.2556599<br>RE DISCCART 61539.2614 639314.335 274.2556599<br>RE DISCCART 61537.277 639263.287 274.7556599<br>RE DISCCART 61336.54345 6393720.065 269.9506486<br>RE     | RE  | DISCCART | 610351.4358       | 6399559.688 265.91949   |
| RE DISCCART 610467.3588 6397212.247 262.326412<br>RE DISCCART 612090.2812 6398183.102 270.902812<br>RE DISCCART 61265.4252 6397661.448 272<br>RE DISCCART 612259.7039 6398328.006 273.3069313<br>RE DISCCART 612255.185 6397849.823 272.9675378<br>RE DISCCART 614003.0112 6398458.419 282.9147343<br>RE DISCCART 614403.7118 639871.477 279.1499018<br>RE DISCCART 614423.2322 6398023.708 281.0503209<br>RE DISCCART 614423.2322 6398023.708 281.0503209<br>RE DISCCART 613756.6748 6397704.919 275.566748<br>RE DISCCART 61377.694 6398168.612 276.942259<br>RE DISCCART 616770.6735 6398385.967 292.7352839<br>RE DISCCART 616770.6735 6398385.967 292.7352839<br>RE DISCCART 616770.6735 6398385.967 292.7352839<br>RE DISCCART 616178.668 6399139.631 288.16199<br>RE DISCCART 61618.6065 639792.275 287.227511<br>RE DISCCART 61618.6065 639792.275 287.227511<br>RE DISCCART 61618.6065 639792.275 287.227511<br>RE DISCCART 616124.3371 6398501.89 289.9902994<br>RE DISCCART 61624.3371 6398501.89 289.9902994<br>RE DISCCART 61329.1266 639451.527 271.1940254<br>RE DISCCART 61329.1266 639451.527 271.1940254<br>RE DISCCART 61325.0211 6394821.334 271.185794<br>RE DISCCART 61325.0211 6394821.334 271.185794<br>RE DISCCART 61325.0211 6394821.334 269.286299<br>RE DISCCART 61325.0211 6394821.334 269.286299<br>RE DISCCART 61325.0211 6394821.334 269.286299<br>RE DISCCART 613452.3768 6394297.277 277.194758<br>RE DISCCART 613452.3768 6394297.277 277.194758<br>RE DISCCART 616263.5103 639473.257 277.194758<br>RE DISCCART 61660.2409 639437.257 277.194758<br>RE DISCCART 61660.2409 639437.257 277.194758<br>RE DISCCART 616263.5103 639473.292 280<br>RE DISCCART 616263.5103 639473.292 282.1433564<br>RE DISCCART 616263.5103 639473.292 282.<br>RE DISCCART 615959.2123 6393183.921 277.055825<br>RE DISCCART 61587.777 639263.267 274.7556599<br>RE DISCCART 61587.777 639263.267 274.7556599<br>RE DISCCART 61587.777 639263.267 274.7556599<br>RE DISCCART 61587.777 639263.267 274.7556599<br>RE DISCCART 61533.2607 6393314.335 268.3615621<br>RE DISCCART 61533.2607 6393314.335 271.7149778<br>RE DISCCART 61535.4345 639310.058 270.32442337<br>RE DISCCART 61336.4345 639314     | RE  | DISCCART | 610873.0894       | 6398936.602 265.269106  |
| RE DISCCART 612090.2812 6398183.102 270.902812<br>RE DISCCART 612262.4252 639761.448 272<br>RE DISCCART 612756.8386 6398675.775 274.326136<br>RE DISCCART 612235.185 6397849.823 272.9675378<br>RE DISCCART 614003.0112 6398458.419 282.9147343<br>RE DISCCART 614408.7418 6398371.477 279.1499018<br>RE DISCCART 614423.2322 6398023.708 281.0503209<br>RE DISCCART 61423.2322 6398023.708 281.0503209<br>RE DISCCART 613756.6748 6397104.919 275.566748<br>RE DISCCART 61170.6735 6398385.967 292.7352839<br>RE DISCCART 616170.6735 6398385.967 292.7352839<br>RE DISCCART 616717.06735 6398385.967 292.74542584<br>RE DISCCART 616170.6735 6398385.967 292.74542584<br>RE DISCCART 61618.6065 63972.275 287.22751<br>RE DISCCART 616124.3371 6397574.506 289.533178<br>RE DISCCART 616124.3371 639501.89 289.990294<br>RE DISCCART 616124.3371 639501.89 289.990294<br>RE DISCCART 611206.3681 6393183.921 259.9131303<br>RE DISCCART 613264.3371 639501.89 289.990294<br>RE DISCCART 613626.2613 6395007.09 271.474774<br>RE DISCCART 613627.216 6394531.527 271.1940254<br>RE DISCCART 613625.0211 6394966.238 269.6794747<br>RE DISCCART 61325.0211 6394603.3978 269.6390271<br>RE DISCCART 61325.0211 6394603.978 269.6390271<br>RE DISCCART 613264.0019 6394401.113 267.3671044<br>RE DISCCART 613264.019 6394451.334 269.286299<br>RE DISCCART 613264.0019 6394401.113 267.3671044<br>RE DISCCART 613264.019 6394431.4171 268.6331878<br>RE DISCCART 61530.2315 6394372.57 277.194758<br>RE DISCCART 615325.0211 6394937.257 277.194758<br>RE DISCCART 61669.2409 639473.292 280<br>RE DISCCART 616635.9621 6394430.094 287.5908357<br>RE DISCCART 616265.5487 639367.594 279.6891927<br>RE DISCCART 61587.7777 6392633.287 274.755599<br>RE DISCCART 61587.7777 6392633.287 274.755599<br>RE DISCCART 615877.777 6392633.287 274.755599<br>RE DISCCART 61587.7777 6392633.287 274.755599<br>RE DISCCART 61533.2607 639314.335 268.3615621<br>RE DISCCART 61533.2607 639314.335 271.7149778<br>RE DISCCART 61535.9415 6393030.018 270.361451<br>RE DISCCART 61535.9415 6393314.335 268.3615621<br>RE DISCCART 61335.0216 6393483.291 268.3871431<br>RE DISCCART 61335.6145 639314.335 271.7149778<br>RE DI     | RE  | DISCCART | 610786.1471       | 6398458.419 265.8549455 |
| RE DISCCART 612090.2812 6398183.102 270.902812<br>RE DISCCART 612262.4252 639761.448 272<br>RE DISCCART 612756.8386 6398675.775 274.326136<br>RE DISCCART 612235.185 6397849.823 272.9675378<br>RE DISCCART 614003.0112 6398458.419 282.9147343<br>RE DISCCART 614408.7418 6398371.477 279.1499018<br>RE DISCCART 614423.2322 6398023.708 281.0503209<br>RE DISCCART 61423.2322 6398023.708 281.0503209<br>RE DISCCART 613756.6748 6397104.919 275.566748<br>RE DISCCART 61170.6735 6398385.967 292.7352839<br>RE DISCCART 616170.6735 6398385.967 292.7352839<br>RE DISCCART 616717.06735 6398385.967 292.74542584<br>RE DISCCART 616170.6735 6398385.967 292.74542584<br>RE DISCCART 61618.6065 63972.275 287.22751<br>RE DISCCART 616124.3371 6397574.506 289.533178<br>RE DISCCART 616124.3371 639501.89 289.990294<br>RE DISCCART 616124.3371 639501.89 289.990294<br>RE DISCCART 611206.3681 6393183.921 259.9131303<br>RE DISCCART 613264.3371 639501.89 289.990294<br>RE DISCCART 613626.2613 6395007.09 271.474774<br>RE DISCCART 613627.216 6394531.527 271.1940254<br>RE DISCCART 613625.0211 6394966.238 269.6794747<br>RE DISCCART 61325.0211 6394603.3978 269.6390271<br>RE DISCCART 61325.0211 6394603.978 269.6390271<br>RE DISCCART 613264.0019 6394401.113 267.3671044<br>RE DISCCART 613264.019 6394451.334 269.286299<br>RE DISCCART 613264.0019 6394401.113 267.3671044<br>RE DISCCART 613264.019 6394431.4171 268.6331878<br>RE DISCCART 61530.2315 6394372.57 277.194758<br>RE DISCCART 615325.0211 6394937.257 277.194758<br>RE DISCCART 61669.2409 639473.292 280<br>RE DISCCART 616635.9621 6394430.094 287.5908357<br>RE DISCCART 616265.5487 639367.594 279.6891927<br>RE DISCCART 61587.7777 6392633.287 274.755599<br>RE DISCCART 61587.7777 6392633.287 274.755599<br>RE DISCCART 615877.777 6392633.287 274.755599<br>RE DISCCART 61587.7777 6392633.287 274.755599<br>RE DISCCART 61533.2607 639314.335 268.3615621<br>RE DISCCART 61533.2607 639314.335 271.7149778<br>RE DISCCART 61535.9415 6393030.018 270.361451<br>RE DISCCART 61535.9415 6393314.335 268.3615621<br>RE DISCCART 61335.0216 6393483.291 268.3871431<br>RE DISCCART 61335.6145 639314.335 271.7149778<br>RE DI     | RE  | DISCCART | 610467.3588       | 6397212.247 262.326412  |
| RE DISCCART 612626.4252 6397661.448 272<br>RE DISCCART 612750.39 6398328.006 273.3069313<br>RE DISCCART 612756.8386 6398675.775 274.326136<br>RE DISCCART 614235.185 6397849.823 272.9675378<br>RE DISCCART 614003.0112 6398458.419 282.9147343<br>RE DISCCART 614408.7418 6398371.477 279.1499018<br>RE DISCCART 614423.2322 6398023.708 281.0503209<br>RE DISCCART 613726.6748 6397104.919 275.566748<br>RE DISCCART 613727.694 6398168.612 276.9422259<br>RE DISCCART 616170.6735 6398385.967 292.7352839<br>RE DISCCART 616770.6735 6398385.967 292.7352839<br>RE DISCCART 616710.6735 6398033.9631 288.16199<br>RE DISCCART 616710.6735 639803.963 297.4542584<br>RE DISCCART 61653.3178 6397574.506 289.533178<br>RE DISCCART 616534.371 6398501.89 289.9902994<br>RE DISCCART 61618.6065 6397922.275 287.227511<br>RE DISCCART 616124.3371 6398501.89 289.9902994<br>RE DISCCART 612742.3482 6394212.902 264.4548367<br>RE DISCCART 61329.1266 639451.527 271.1940254<br>RE DISCCART 61329.1266 639451.334 271.185794<br>RE DISCCART 61325.0211 6394621.334 271.185794<br>RE DISCCART 61325.0211 6394621.334 271.185794<br>RE DISCCART 61325.0211 6394621.334 269.6794747<br>RE DISCCART 61325.0211 6394821.334 269.26299<br>RE DISCCART 613640.7517 6394314.171 268.6331878<br>RE DISCCART 613640.7517 6394314.171 268.6331878<br>RE DISCCART 613640.7517 6394314.171 268.6331878<br>RE DISCCART 61593.2315 6394937.257 277.194758<br>RE DISCCART 61587.277 6394067.834 278.3464926<br>RE DISCCART 61587.277 6394067.834 278.3464926<br>RE DISCCART 61587.277 6394067.834 278.3464926<br>RE DISCCART 61587.277 6394067.834 278.3464926<br>RE DISCCART 61587.7777 6392633.267 274.7556599<br>RE DISCCART 61587.7777 6392633.267 274.7556599<br>RE DISCCART 61587.7777 6392633.267 274.7556599<br>RE DISCCART 61587.7777 6393314.335 271.7149778<br>RE DISCCART 61587.6756 6393314.335 271.7149778<br>RE DISCCART 61535.621 6393368.219 268.86751<br>RE DISCCART 61335.621 6393488.219 268.86751<br>RE     |     |          |                   |                         |
| RE         DISCCART         612959.7039         6398328.006         273.3069313           RE         DISCCART         612235.185         6398675.775         274.326136           RE         DISCCART         614408.7418         6398371.477         279.1439018           RE         DISCCART         614408.7418         6398371.477         279.1499018           RE         DISCCART         614423.2322         6398023.708         281.0503209           RE         DISCCART         613756.6748         6397104.919         275.566748           RE         DISCCART         616176.568         6398139.631         288.16199           RE         DISCCART         616170.6735         6398023.708         297.4542584           RE         DISCCART         616170.6735         6398023.708         297.4542584           RE         DISCCART         61618.6065         639722.275         287.227511           RE         DISCCART         6161206.3681         6393183.921         259.9131303           RE         DISCCART         613626.2613         639607.09         271.474774           RE         DISCCART         613626.2613         639403.34         269.280221           RE         DISCCART         613625.0211 <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |          |                   |                         |
| RE         DISCCART         612756.8386         6398675.775         274.326136           RE         DISCCART         614003.0112         6398458.419         282.9147343           RE         DISCCART         614408.7418         6398371.477         279.1490018           RE         DISCCART         614423.2322         6398023.708         281.050309           RE         DISCCART         613756.6748         6397104.919         275.566748           RE         DISCCART         61670.6735         639885.967         292.7352839           RE         DISCCART         61670.6735         6398023.708         297.4542584           RE         DISCCART         616553.3178         639774.506         289.533178           RE         DISCCART         616524.3371         639722.275         287.27511           RE         DISCCART         611206.3681         639413.527         271.1940254           RE         DISCCART         61326.2613         639421.334         271.1940254           RE         DISCCART         61325.0211         6394821.334         271.1940254           RE         DISCCART         61326.2613         639421.334         269.6794747           RE         DISCCART         61326.2613                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |          |                   |                         |
| RE         DISCCART         612235.185         6397849.823         272.9675378           RE         DISCCART         614003.0112         6398458.419         282.9147343           RE         DISCCART         614423.2322         6398023.708         281.0503209           RE         DISCCART         613727.694         6397104.919         275.566748           RE         DISCCART         616176.568         6398139.631         288.16199           RE         DISCCART         616770.6735         6398385.967         292.7352839           RE         DISCCART         616170.0735         6398385.967         292.7352839           RE         DISCCART         616118.6065         6397922.275         287.227511           RE         DISCCART         616120.3717         6398501.89         289.9902994           RE         DISCCART         61624.3371         6398501.89         289.9902994           RE         DISCCART         61329.1266         6394531.527         271.1940254           RE         DISCCART         613626.2613         639007.09         271.474774           RE         DISCCART         613235.0211         6394491.334         269.26390271           RE         DISCCART         613245.0218 <td>RE</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RE  |          |                   |                         |
| RE         DISCCART         614003.0112         6398458.419         282.9147343           RE         DISCCART         614408.7418         6398371.477         279.1499018           RE         DISCCART         613727.694         63981023.708         281.0503209           RE         DISCCART         613727.694         6398168.612         276.9422259           RE         DISCCART         616176.568         6398139.631         288.16199           RE         DISCCART         616170.6735         6398385.967         292.7352839           RE         DISCCART         616170.6735         6398023.708         297.4542584           RE         DISCCART         61653.3178         6397574.506         289.9902994           RE         DISCCART         616524.3371         6398501.89         289.9902994           RE         DISCCART         611206.3681         6393183.921         259.9131303           RE         DISCCART         61329.1266         6394531.527         271.1940254           RE         DISCCART         613235.0211         6394621.334         271.47774           RE         DISCCART         613235.0211         6394491.113         267.367174           RE         DISCCART         613245.0216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RE  | DISCCART | 612756.8386       | 6398675.775 274.326136  |
| RE         DISCCART         614408.7418         6398371.477         279.1499018           RE         DISCCART         61423.2322         6398023.708         281.0503209           RE         DISCCART         613756.6748         6397104.919         275.566748           RE         DISCCART         61676.568         6398139.611         288.16199           RE         DISCCART         616770.6735         639835.967         292.7352839           RE         DISCCART         616710.6735         639774.506         289.533178           RE         DISCCART         616524.3371         639772.275         287.227511           RE         DISCCART         61624.3371         639813.921         259.9131303           RE         DISCCART         61322.1266         639431.527         271.1940254           RE         DISCCART         613829.1266         639421.334         271.18794           RE         DISCCART         613262.211         6394621.334         269.287974           RE         DISCCART         613255.0211         6394401.113         267.3671044           RE         DISCCART         613264.019         6394401.113         267.3671044           RE         DISCCART         613264.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RE  | DISCCART | 612235.185 6      | 397849.823 272.9675378  |
| RE DISCCART 614423.2322 6398023.708 281.0503209<br>RE DISCCART 613756.6748 6397704.919 275.566748<br>RE DISCCART 616176.568 6398139.631 288.16199<br>RE DISCCART 616170.6735 639835.967 292.7352839<br>RE DISCCART 616170.6735 639835.967 292.7352839<br>RE DISCCART 616118.6065 6397922.275 287.227511<br>RE DISCCART 61618.6065 6397922.275 287.227511<br>RE DISCCART 6161206.3681 639313.921 259.913103<br>RE DISCCART 61206.3681 639313.921 259.913103<br>RE DISCCART 61206.3681 639313.921 259.913103<br>RE DISCCART 612742.3482 6393212.902 264.4548367<br>RE DISCCART 613829.1266 6394531.527 271.1940254<br>RE DISCCART 613829.1266 6394531.527 271.1940254<br>RE DISCCART 613626.2613 6395009.709 271.474774<br>RE DISCCART 613235.0211 6394821.334 271.185794<br>RE DISCCART 613235.0211 6394821.334 269.286299<br>RE DISCCART 613225.0211 6394821.334 269.286299<br>RE DISCCART 61325.0211 6394603.978 269.6390271<br>RE DISCCART 61325.0211 6394603.978 269.6390271<br>RE DISCCART 61325.0211 6394401.113 267.3671044<br>RE DISCCART 61325.0213 639437.257 777.194758<br>RE DISCCART 613640.7517 6394314.171 268.6331878<br>RE DISCCART 615930.2315 6394037.257 777.194758<br>RE DISCCART 615930.2315 639437.257 777.194758<br>RE DISCCART 616263.5103 6394734.392 280<br>RE DISCCART 61625.5487 639367.6594 279.6891927<br>RE DISCCART 61625.5487 639367.6594 279.6891927<br>RE DISCCART 615959.2123 6393183.921 277.0655825<br>RE DISCCART 615959.2123 6393183.921 277.0655825<br>RE DISCCART 61522.6549 639367.594 279.6891927<br>RE DISCCART 61522.6549 639367.594 279.6891927<br>RE DISCCART 61524.61385 639303.018 270.361451<br>RE DISCCART 61524.6376 6393314.335 271.7149778<br>RE DISCCART 615472.748 639414.0268 268.3615621<br>RE DISCCART 614205.8765 6393314.335 271.7149778<br>RE DISCCART 61332.607 6393314.335 271.7149778<br>RE DISCCART 614394.2514 6393835.988 269.302394<br>RE DISCCART 613376.0214 6394125.796 267.9227209<br>RE DISCCART 613376.0214 6394125.796 267.9227209<br>RE DISCCART 613375.0211 6394125.796 267.9227209<br>RE DISCCART 613375.0211 6394125.796 267.9227209<br>RE DISCCART 613375.9214 639314.335 271.7149778<br>RE DISCCART 61277.8579 6395111.142 265.       | RE  | DISCCART | 614003.0112       | 6398458.419 282.9147343 |
| RE DISCCART 614423.2322 6398023.708 281.0503209<br>RE DISCCART 613756.6748 6397704.919 275.566748<br>RE DISCCART 616176.568 6398139.631 288.16199<br>RE DISCCART 616170.6735 639835.967 292.7352839<br>RE DISCCART 616170.6735 639835.967 292.7352839<br>RE DISCCART 616118.6065 6397922.275 287.227511<br>RE DISCCART 61618.6065 6397922.275 287.227511<br>RE DISCCART 6161206.3681 639313.921 259.913103<br>RE DISCCART 61206.3681 639313.921 259.913103<br>RE DISCCART 61206.3681 639313.921 259.913103<br>RE DISCCART 612742.3482 6393212.902 264.4548367<br>RE DISCCART 613829.1266 6394531.527 271.1940254<br>RE DISCCART 613829.1266 6394531.527 271.1940254<br>RE DISCCART 613626.2613 6395009.709 271.474774<br>RE DISCCART 613235.0211 6394821.334 271.185794<br>RE DISCCART 613235.0211 6394821.334 269.286299<br>RE DISCCART 613225.0211 6394821.334 269.286299<br>RE DISCCART 61325.0211 6394603.978 269.6390271<br>RE DISCCART 61325.0211 6394603.978 269.6390271<br>RE DISCCART 61325.0211 6394401.113 267.3671044<br>RE DISCCART 61325.0213 639437.257 777.194758<br>RE DISCCART 613640.7517 6394314.171 268.6331878<br>RE DISCCART 615930.2315 6394037.257 777.194758<br>RE DISCCART 615930.2315 639437.257 777.194758<br>RE DISCCART 616263.5103 6394734.392 280<br>RE DISCCART 61625.5487 639367.6594 279.6891927<br>RE DISCCART 61625.5487 639367.6594 279.6891927<br>RE DISCCART 615959.2123 6393183.921 277.0655825<br>RE DISCCART 615959.2123 6393183.921 277.0655825<br>RE DISCCART 61522.6549 639367.594 279.6891927<br>RE DISCCART 61522.6549 639367.594 279.6891927<br>RE DISCCART 61524.61385 639303.018 270.361451<br>RE DISCCART 61524.6376 6393314.335 271.7149778<br>RE DISCCART 615472.748 639414.0268 268.3615621<br>RE DISCCART 614205.8765 6393314.335 271.7149778<br>RE DISCCART 61332.607 6393314.335 271.7149778<br>RE DISCCART 614394.2514 6393835.988 269.302394<br>RE DISCCART 613376.0214 6394125.796 267.9227209<br>RE DISCCART 613376.0214 6394125.796 267.9227209<br>RE DISCCART 613375.0211 6394125.796 267.9227209<br>RE DISCCART 613375.0211 6394125.796 267.9227209<br>RE DISCCART 613375.9214 639314.335 271.7149778<br>RE DISCCART 61277.8579 6395111.142 265.       | RE  | DISCCART | 614408.7418       | 6398371.477 279.1499018 |
| RE         DISCCART         613756.6748         6397704.919         275.566748           RE         DISCCART         613727.694         6398168.612         276.9422259           RE         DISCCART         616176.568         6398139.631         288.16199           RE         DISCCART         616170.6735         6398365.967         292.7352839           RE         DISCCART         616553.3178         6397574.506         289.533178           RE         DISCCART         61618.6055         6397922.275         287.227511           RE         DISCCART         616124.3371         6398501.89         289.9902994           RE         DISCCART         616124.3371         6398501.89         289.9902994           RE         DISCCART         611206.3681         6393183.921         259.9131303           RE         DISCCART         613829.126         6394321.334         271.1940254           RE         DISCCART         613825.0211         6394821.334         269.286299           RE         DISCCART         613264.0019         6394401.113         267.0016761           RE         DISCCART         613452.3768         6394299.68         267.0016761           RE         DISCCART         613452.3768 <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |          |                   |                         |
| RE DISCCART 613727.694 6398168.612 276.9422259<br>RE DISCCART 616176.568 6398139.631 288.16199<br>RE DISCCART 616770.6735 6398385.967 292.7352839<br>RE DISCCART 616573.3178 6397574.506 289.533178<br>RE DISCCART 616553.3178 6397574.506 289.533178<br>RE DISCCART 616524.3371 6398501.89 280.9902994<br>RE DISCCART 616524.3371 6398501.89 280.9902994<br>RE DISCCART 61524.3371 6398501.89 280.9902994<br>RE DISCCART 612742.3482 6393212.902 264.4548367<br>RE DISCCART 613829.1266 6394531.527 271.1940254<br>RE DISCCART 613867.0882 6394821.334 271.185794<br>RE DISCCART 613867.0882 6394821.334 271.185794<br>RE DISCCART 61325.0211 6394966.238 269.6794747<br>RE DISCCART 61325.0211 6394966.238 269.6794747<br>RE DISCCART 61325.0211 639466.238 269.6794747<br>RE DISCCART 61325.0211 6394401.113 267.3671044<br>RE DISCCART 61325.0211 6394401.113 267.3671044<br>RE DISCCART 61325.0211 6394401.113 267.3671044<br>RE DISCCART 61325.0211 6394401.113 267.3671044<br>RE DISCCART 613640.7517 6394314.171 268.6331878<br>RE DISCCART 616669.2409 6394879.296 282.1433564<br>RE DISCCART 616669.2409 6394879.296 282.1433564<br>RE DISCCART 616669.2409 6394879.296 282.1433564<br>RE DISCCART 61623.5103 6394734.392 280<br>RE DISCCART 616263.5103 6394734.392 280<br>RE DISCCART 616263.5103 6394734.392 280<br>RE DISCCART 616263.5407 6393676.594 279.6681927<br>RE DISCCART 615872.77 6392633.287 274.755599<br>RE DISCCART 615857.7797 6392633.287 274.755599<br>RE DISCCART 615959.2123 639318.3921 277.0655825<br>RE DISCCART 615959.2123 639318.3921 277.0655825<br>RE DISCCART 615959.2123 6393314.335 268.3615621<br>RE DISCCART 615959.2123 6393314.335 268.3615621<br>RE DISCCART 61595.7467 63933662.104 275.442357<br>RE DISCCART 61592.6549 6393662.104 275.442357<br>RE DISCCART 615916.6748 639314.335 268.3615621<br>RE DISCCART 61335.621 6393388.219 268.3874131<br>RE DISCCART 61335.0211 6394140.286 268.80572<br>RE DISCCART 61335.0211 6394140.286 268.80572<br>RE DISCCART 61335.0211 6394140.286 268.80572<br>RE DISCCART 61335.0211 6394140.286 268.80572<br>RE DISCCART 613250.0211 6394140.286 268.80572<br>RE DISCCART 613250.0214 6394140.286 268.80572<br>RE DISCCAR     |     |          |                   |                         |
| RE DISCCART 616176.568 6398139.631 288.16199<br>RE DISCCART 616770.6735 6398385.967 292.7352839<br>RE DISCCART 617017.0099 6398023.708 297.4542584<br>RE DISCCART 616553.3178 6397574.506 289.533178<br>RE DISCCART 616524.3371 6398501.89 289.990294<br>RE DISCCART 616524.3371 6398501.89 289.990294<br>RE DISCCART 61206.3681 6393183.921 259.9131303<br>RE DISCCART 612742.3482 6393212.902 264.4548367<br>RE DISCCART 613887.0882 639421.334 271.185794<br>RE DISCCART 613862.613 6395009.709 271.474774<br>RE DISCCART 61325.0211 6394821.334 271.185794<br>RE DISCCART 613235.0211 6394821.334 269.286299<br>RE DISCCART 613235.0211 6394821.334 269.286299<br>RE DISCCART 61325.0211 6394603.978 269.6390271<br>RE DISCCART 61325.0211 6394401.113 267.3671044<br>RE DISCCART 61325.0211 6394401.113 267.3671044<br>RE DISCCART 61325.0215 6394603.978 269.6390271<br>RE DISCCART 613640.7517 6394314.171 268.6331878<br>RE DISCCART 615649.2409 6394879.296 282.1433564<br>RE DISCCART 615930.2315 6394037.257 277.194758<br>RE DISCCART 616669.2409 6394879.296 282.1433564<br>RE DISCCART 616669.2409 6394879.296 282.1433564<br>RE DISCCART 61669.2409 6394879.296 282.1433564<br>RE DISCCART 61623.5103 6394734.392 280<br>RE DISCCART 615959.2123 639318.921 277.0655825<br>RE DISCCART 615959.2123 639318.921 277.0655825<br>RE DISCCART 615959.2123 639318.921 277.0655825<br>RE DISCCART 615959.2123 639318.921 277.0655825<br>RE DISCCART 615959.2123 639314.335 271.7149778<br>RE DISCCART 61592.6549 6393662.104 275.442357<br>RE DISCCART 61592.6549 6393662.104 275.442357<br>RE DISCCART 61592.6549 6393662.104 275.442357<br>RE DISCCART 615913.2607 639314.335 268.3615621<br>RE DISCCART 615916.689 639348.219 268.3874131<br>RE DISCCART 61335.0211 6394140.286 268.80572<br>RE DISCCART 61335.0211 6394140.286 268.80572<br>RE DISCCART 61335.0211 6394140.286 268.80572<br>RE DISCCART 613756.6748 6394140.286 268.80572<br>RE DISCCART 613756.6748 6394140.286 268.80572<br>RE DISCCART 613250.211 6394125.796 267.9227209<br>RE DISCCART 613250.211 6394125.796 267.9227209<br>RE DISCCART 613250.211 6394125.796 267.9227209<br>RE DISCCART 613756.6748 6394140.286 268.80572<br>RE      |     |          |                   |                         |
| RE         DISCCART         616770.6735         6398385.967         292.7352839           RE         DISCCART         616553.3178         6397574.506         289.533178           RE         DISCCART         616118.6065         639722.275         287.227511           RE         DISCCART         616124.3371         6398501.89         289.9902994           RE         DISCCART         611206.3681         639312.902         264.4548367           RE         DISCCART         613429.1266         6394531.527         271.1940254           RE         DISCCART         613235.0211         6394966.238         269.6794747           RE         DISCCART         613235.0211         63949821.334         269.286299           RE         DISCCART         613235.0211         6394966.238         269.6794747           RE         DISCCART         613235.0211         6394491.334         269.286299           RE         DISCCART         613264.0019         6394491.113         267.30704           RE         DISCCART         613640.7517         6394374.277         277.194758           RE         DISCCART         616205.5487         6393676.594         279.6891927           RE         DISCCART         616205.548                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RE  | DISCCART |                   |                         |
| RE DISCCART         617017.0099         6398023.708         297.4542584           RE DISCCART         616553.3178         6397574.506         289.533178           RE DISCCART         616118.6065         6397922.275         287.227511           RE DISCCART         616124.3371         6398501.89         289.9902994           RE DISCCART         612742.3482         6393183.921         259.9131303           RE DISCCART         613829.1266         6394531.527         271.1940254           RE DISCCART         613829.1266         6394521.334         271.185794           RE DISCCART         613235.0211         6394966.238         269.6794747           RE DISCCART         613235.0211         6394621.334         269.286299           RE DISCCART         613235.0211         6394621.334         269.286299           RE DISCCART         613264.019         6394401.113         267.3671044           RE DISCCART         613264.019         6394431.4171         268.6331878           RE DISCCART         613640.7517         6394374.392         280           RE DISCCART         616669.2409         639473.432         280.577           RE DISCCART         616265.5487         6393676.594         279.6891927           RE DISCCART                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RE  | DISCCART | 616176.568 6      | 398139.631 288.16199    |
| RE         DISCCART         616553.3178         6397574.506         289.533178           RE         DISCCART         616118.6065         6397922.275         287.227511           RE         DISCCART         616224.3371         6398501.89         289.9902994           RE         DISCCART         611206.3681         6393183.921         259.9131303           RE         DISCCART         612742.3482         6393212.902         264.4548367           RE         DISCCART         613829.1266         6394531.527         271.1940254           RE         DISCCART         613827.0882         6394621.334         271.187794           RE         DISCCART         613235.0211         6394966.238         269.6794747           RE         DISCCART         613235.0211         6394821.334         269.286299           RE         DISCCART         613264.0019         6394401.113         267.3671044           RE         DISCCART         613640.7517         6394372.57         277.194758           RE         DISCCART         61669.2409         639473.432         280           RE         DISCCART         61623.5103         639473.432         280           RE         DISCCART         616205.5487 <td< td=""><td>RE</td><td>DISCCART</td><td>616770.6735</td><td>6398385.967 292.7352839</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RE  | DISCCART | 616770.6735       | 6398385.967 292.7352839 |
| RE         DISCCART         616553.3178         6397574.506         289.533178           RE         DISCCART         616118.6065         6397922.275         287.227511           RE         DISCCART         616224.3371         6398501.89         289.9902994           RE         DISCCART         611206.3681         6393183.921         259.9131303           RE         DISCCART         612742.3482         6393212.902         264.4548367           RE         DISCCART         613829.1266         6394531.527         271.1940254           RE         DISCCART         613827.0882         6394621.334         271.187794           RE         DISCCART         613235.0211         6394966.238         269.6794747           RE         DISCCART         613235.0211         6394821.334         269.286299           RE         DISCCART         613264.0019         6394401.113         267.3671044           RE         DISCCART         613640.7517         6394372.57         277.194758           RE         DISCCART         61669.2409         639473.432         280           RE         DISCCART         61623.5103         639473.432         280           RE         DISCCART         616205.5487 <td< td=""><td>RE</td><td>DISCCART</td><td>617017.0099</td><td>6398023.708 297.4542584</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RE  | DISCCART | 617017.0099       | 6398023.708 297.4542584 |
| RE         DISCCART         616118.6065         6397922.275         287.227511           RE         DISCCART         616524.3371         6398501.89         289.9902994           RE         DISCCART         611206.3681         6393183.921         259.9131303           RE         DISCCART         612742.3482         6393212.902         264.4548367           RE         DISCCART         613829.1266         6394531.527         271.1940254           RE         DISCCART         613827.0882         6394821.334         271.185794           RE         DISCCART         613235.0211         6394961.334         269.286299           RE         DISCCART         613235.0211         6394421.334         269.286299           RE         DISCCART         613264.0019         6394401.113         267.3671044           RE         DISCCART         613640.7517         6394314.171         268.6331878           RE         DISCCART         61669.2409         6394479.296         282.1433564           RE         DISCCART         616635.9621         639430.094         287.5908357           RE         DISCCART         616205.5487         6393676.594         279.6891927           RE         DISCCART         615292.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RE  | DISCCART |                   |                         |
| RE DISCCART 616524.3371 6398501.89 289.9902994<br>RE DISCCART 611206.3681 6393183.921 259.9131303<br>RE DISCCART 612742.3482 6393212.902 264.4548367<br>RE DISCCART 613829.1266 6394531.527 271.1940254<br>RE DISCCART 613887.0882 6394821.334 271.185794<br>RE DISCCART 613626.2613 6395009.709 271.474774<br>RE DISCCART 613235.0211 6394966.238 269.6794747<br>RE DISCCART 613235.0211 6394821.334 269.286299<br>RE DISCCART 61325.0211 6394821.334 269.286299<br>RE DISCCART 613264.0019 6394401.113 267.3671044<br>RE DISCCART 613452.3768 6394299.68 267.0016761<br>RE DISCCART 613452.3768 6394299.68 267.0016761<br>RE DISCCART 613640.7517 6394314.171 268.6331878<br>RE DISCCART 615930.2315 6394937.257 277.194758<br>RE DISCCART 616669.2409 6394879.296 282.1433564<br>RE DISCCART 616669.2409 6394430.094 287.5908357<br>RE DISCCART 616263.5103 6394734.392 280<br>RE DISCCART 616263.5103 6394734.392 280<br>RE DISCCART 616263.5103 6394734.392 280<br>RE DISCCART 616265.5487 6393676.594 279.6891927<br>RE DISCCART 615872.27 6394067.834 278.3464926<br>RE DISCCART 615872.27 6393676.594 279.6891927<br>RE DISCCART 615959.2123 6393183.921 277.0655825<br>RE DISCCART 61557.7797 6392633.287 274.7556599<br>RE DISCCART 61557.7797 6392633.287 274.7556599<br>RE DISCCART 615292.6549 6393662.104 275.442357<br>RE DISCCART 615959.2123 639314.335 271.7149778<br>RE DISCCART 61594.214 6393835.988 269.302394<br>RE DISCCART 615133.2607 639314.335 271.7149778<br>RE DISCCART 613365.4345 6393720.065 269.9506486<br>RE DISCCART 613365.4345 6393720.065 269.9506486<br>RE DISCCART 613365.4345 6393720.065 269.9506486<br>RE DISCCART 613756.6748 6394140.286 268.80572<br>RE DISCCART 61335.0211 6394125.796 267.9227209<br>RE DISCCART 61325.0211 6394125.796 267.9227209<br>RE DISCCART 612597.4455 6395111.142 265.6311412<br>RE DISCCART 612597.4455 6394140.286 268.80572<br>RE DISCCART 612597.4455 6394140.286 268.80572<br>RE DISCCART 612597.4455 6394140.286 268.80572<br>RE DISCCART 612597.4455 6394140.286 268.30572<br>RE DISCCART 612597.4455 6394140.286 267.051205<br>RE DISCCART 612597.4455 639412.277.0531963<br>RE DISCCART 61277.8579 6395111.142 265.6311412<br>RE      |     |          |                   |                         |
| RE DISCCART 611206.3681 6393183.921 259.9131303<br>RE DISCCART 612742.3482 6393212.902 264.4548367<br>RE DISCCART 613829.1266 6394531.527 271.1940254<br>RE DISCCART 613887.0882 6394821.334 271.185794<br>RE DISCCART 613626.2613 6395009.709 271.474774<br>RE DISCCART 613235.0211 6394966.238 269.6794747<br>RE DISCCART 613235.0211 6394821.334 269.286299<br>RE DISCCART 613264.0019 6394401.113 267.3671044<br>RE DISCCART 613452.3768 6394299.68 267.0016761<br>RE DISCCART 613452.3768 6394299.68 267.0016761<br>RE DISCCART 613640.7517 6394314.171 268.6331878<br>RE DISCCART 61669.2409 6394879.296 282.1433564<br>RE DISCCART 61669.2409 639473.257 277.194758<br>RE DISCCART 616635.9021 6394430.094 287.5908357<br>RE DISCCART 616263.5103 6394734.392 280<br>RE DISCCART 61625.5487 6393676.594 279.6891927<br>RE DISCCART 615872.27 6394067.834 278.3464926<br>RE DISCCART 615959.2123 6393183.921 277.0655825<br>RE DISCCART 615959.2124 63933662.104 275.442357<br>RE DISCCART 615959.2124 6393314.335 271.7149778<br>RE DISCCART 613916.0689 6393488.219 268.3874131<br>RE DISCCART 613916.0689 6393488.219 268.3874131<br>RE DISCCART 613916.0689 6393488.219 268.3874131<br>RE DISCCART 613756.6748 6394140.286 268.80572<br>RE DISCCART 613756.6748 6394140.286 268.80572<br>RE DISCCART 613250.0211 6394125.796 267.9227209<br>RE DISCCART 613250.0211 6394125.796 267.9227209<br>RE DISCCART 61277.8579 6395111.142 265.6311412<br>RE DISCCART 61277.8579 6395111.142 265.6311412<br>RE DISCCART 61277.8579 6395111.142 265.6311412<br>RE DISCCART 612713.3675 6396168.939 274.2035842<br>RE DISCCART 613       |     |          |                   |                         |
| RE DISCCART 612742.3482 6393212.902 264.4548367<br>RE DISCCART 613829.1266 6394531.527 271.1940254<br>RE DISCCART 613887.0882 6394821.334 271.185794<br>RE DISCCART 613626.2613 6395009.709 271.474774<br>RE DISCCART 613235.0211 6394966.238 269.6794747<br>RE DISCCART 613235.0211 6394821.334 269.286299<br>RE DISCCART 613191.55 6394603.978 269.6390271<br>RE DISCCART 613264.0019 6394401.113 267.3671044<br>RE DISCCART 613452.3768 6394299.68 267.0016761<br>RE DISCCART 613452.3768 6394299.68 267.0016761<br>RE DISCCART 615930.2315 639437.257 277.194758<br>RE DISCCART 616669.2409 6394879.296 282.1433564<br>RE DISCCART 616669.2409 6394734.392 280<br>RE DISCCART 616635.9021 6394430.094 287.5908357<br>RE DISCCART 615872.27 6394067.834 278.3464926<br>RE DISCCART 615859.2123 6393183.921 277.0655825<br>RE DISCCART 615959.2123 639318.3921 277.0655825<br>RE DISCCART 615959.2123 639318.3921 277.0655825<br>RE DISCCART 615959.2124 6393314.335 268.3615621<br>RE DISCCART 613916.0689 6393488.219 268.3874131<br>RE DISCCART 613916.0689 6393488.219 268.3874131<br>RE DISCCART 613716.6748 6394140.286 268.80572<br>RE DISCCART 613756.6748 6394140.286 268.80572<br>RE DISCCART 61325.0211 6394125.796 267.9227209<br>RE DISCCART 612277.8579 6395111.142 265.6311412<br>RE DISCCART 61277.8579 6395111.142 265.6311412<br>RE DISCCART 612713.3675 6396168.939 274.2035842<br>RE DISCCART 612713.3675 6396168.939 274.2035842<br>RE DISCCART 613379.9249 6395096.651 272.4245138<br>RE DISCCART 613379.9249 6395096.651 272.4245138                                                                           |     |          |                   |                         |
| REDISCCART613829.12666394531.527271.1940254REDISCCART613626.26136395009.709271.474774REDISCCART613235.02116394966.238269.6794747REDISCCART613235.02116394966.238269.6390271REDISCCART613235.02116394821.334269.286299REDISCCART613191.556394603.978269.6390271REDISCCART613264.00196394401.113267.3671044REDISCCART613640.75176394314.171268.6331878REDISCCART61669.24096394879.296282.1433564REDISCCART616669.24096394734.392280REDISCCART616263.51036394734.392280REDISCCART616263.51036394734.392280REDISCCART616205.54876393676.594279.6891927REDISCCART615872.276394067.834278.3464926REDISCCART615959.21236393183.921277.0655825REDISCCART615959.21236393183.921277.0655825REDISCCART61533.26076393314.335271.7149778REDISCCART61533.26076393314.335271.7149778REDISCCART61394.25146393348.219268.3874131REDISCCART61396.43456393720.065269.9506486REDISCCART613365.43456394140.286268.80572REDISCCART61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RE  | DISCCART |                   |                         |
| REDISCCART613887.08826394821.334271.185794REDISCCART613235.02116394966.238269.6794747REDISCCART613235.02116394966.238269.6794747REDISCCART613235.02116394821.334269.286299REDISCCART613191.556394603.978269.6390271REDISCCART613264.00196394401.113267.3671044REDISCCART613452.37686394299.68267.0016761REDISCCART613640.75176394314.171268.6331878REDISCCART616669.24096394879.296282.1433564REDISCCART616669.24096394734.392280REDISCCART616263.51036394734.392280REDISCCART616263.51036394734.392280REDISCCART616205.54876393676.594279.6891927REDISCCART615872.276394067.834278.3464926REDISCCART615959.21236393183.921277.0655825REDISCCART615959.21236393183.921277.0655825REDISCCART61533.26076393314.335271.7149778REDISCCART61533.26076393314.335271.7149778REDISCCART61394.2514639335.988269.302394REDISCCART61396.643456393720.065269.9506486REDISCCART613365.43456394140.286268.80572REDISCCART613                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RE  | DISCCART | 612742.3482       | 6393212.902 264.4548367 |
| REDISCCART613626.26136395009.709271.474774REDISCCART613235.02116394966.238269.6794747REDISCCART613235.02116394821.334269.286299REDISCCART613191.556394603.978269.6390271REDISCCART613264.00196394401.113267.3671044REDISCCART613452.37686394299.68267.0016761REDISCCART613640.75176394314.171268.6331878REDISCCART616669.24096394879.296282.1433564REDISCCART616263.51036394734.392280REDISCCART616263.51036394734.392280REDISCCART616205.54876393676.594279.6891927REDISCCART615959.21236393183.921277.0655825REDISCCART615292.6549639362.104275.442357REDISCCART615292.6549639362.104275.442357REDISCCART615292.6549639314.335271.7149778REDISCCART615292.6549639314.335268.361561REDISCCART615292.65496393314.335268.361561REDISCCART615292.65496393314.335271.7149778REDISCCART615292.65496393314.335268.361561REDISCCART615433.26076393314.335268.36121REDISCCART613916.06896393488.219268.38741REDISCCART <td< td=""><td>RE</td><td>DISCCART</td><td>613829.1266</td><td>6394531.527 271.1940254</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RE  | DISCCART | 613829.1266       | 6394531.527 271.1940254 |
| REDISCCART613235.02116394966.238269.6794747REDISCCART613235.02116394821.334269.286299REDISCCART613191.556394603.978269.6390271REDISCCART613264.00196394401.113267.3671044REDISCCART613452.37686394299.68267.0016761REDISCCART613640.75176394314.171268.6331878REDISCCART616669.24096394879.296282.1433564REDISCCART616263.51036394734.392280REDISCCART616263.51036394734.392280REDISCCART616263.51036394734.392280REDISCCART616263.51036394734.392280REDISCCART616263.51036394734.392280REDISCCART616263.51036394734.392280REDISCCART616205.54876393676.594279.6891927REDISCCART615959.21236393183.921277.0655825REDISCCART615922.6549639362.104275.442357REDISCCART615922.65496393039.018270.361451REDISCCART615946.31856393039.018270.361451REDISCCART615942.5146393314.335268.36121REDISCCART61394.25146393372.0.065269.9506486REDISCCART61335.02116394140.286268.80572REDISCCART61335.02116394125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RE  | DISCCART | 613887.0882       | 6394821.334 271.185794  |
| REDISCCART613235.02116394966.238269.6794747REDISCCART613235.02116394821.334269.286299REDISCCART613191.556394603.978269.6390271REDISCCART613264.00196394401.113267.3671044REDISCCART613452.37686394299.68267.0016761REDISCCART613640.75176394314.171268.6331878REDISCCART616669.24096394879.296282.1433564REDISCCART616263.51036394734.392280REDISCCART616263.51036394734.392280REDISCCART616263.51036394734.392280REDISCCART616263.51036394734.392280REDISCCART616263.51036394734.392280REDISCCART616263.51036394734.392280REDISCCART616205.54876393676.594279.6891927REDISCCART615959.21236393183.921277.0655825REDISCCART615922.6549639362.104275.442357REDISCCART615922.65496393039.018270.361451REDISCCART615946.31856393039.018270.361451REDISCCART615942.5146393314.335268.36121REDISCCART61394.25146393372.0.065269.9506486REDISCCART61335.02116394140.286268.80572REDISCCART61335.02116394125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |          |                   |                         |
| REDISCCART613235.02116394821.334269.286299REDISCCART613191.556394603.978269.6390271REDISCCART613264.00196394401.113267.3671044REDISCCART613452.37686394299.68267.0016761REDISCCART613640.75176394314.171268.6331878REDISCCART615930.23156394937.257277.194758REDISCCART616669.24096394879.296282.1433564REDISCCART616263.51036394734.392280REDISCCART616263.51036394734.392280REDISCCART616263.51036394734.392280REDISCCART616263.51036394734.392280REDISCCART616263.51036394734.392280REDISCCART616263.51036394734.392280REDISCCART616205.54876393676.594279.6891927REDISCCART615959.21236393183.921277.0655825REDISCCART615929.6549639362.104275.442357REDISCCART615292.65496393039.018270.361451REDISCCART615292.65496393314.335271.7149778REDISCCART615292.65496393314.335268.36121REDISCCART615433.26076393314.335268.3874131REDISCCART613916.06896394140.286268.80572REDISCCART61335.0211639412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |          |                   |                         |
| REDISCCART613191.556394603.978269.6390271REDISCCART613264.00196394401.113267.3671044REDISCCART613452.37686394299.68267.0016761REDISCCART613640.75176394314.171268.6331878REDISCCART615930.23156394937.257277.194758REDISCCART616669.24096394879.296282.1433564REDISCCART616263.51036394734.392280REDISCCART616263.51036394734.392280REDISCCART616263.51036394734.392280REDISCCART616263.51036394734.392280REDISCCART616205.5487639467.834278.3464926REDISCCART615872.276394067.834278.3464926REDISCCART615959.21236393183.921277.0655825REDISCCART615959.2123639362.104275.442357REDISCCART615922.6549639362.104275.442357REDISCCART615292.65496393309.018270.361451REDISCCART61533.26076393314.335268.3615621REDISCCART615292.65496393314.335268.3615621REDISCCART613916.06896393488.219268.3874131REDISCCART613916.06896393488.219268.3874131REDISCCART61335.02116394125.796267.051205REDISCCART61325.0211 </td <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |          |                   |                         |
| REDISCCART613264.00196394401.113267.3671044REDISCCART613452.37686394299.68267.0016761REDISCCART615930.23156394314.171268.6331878REDISCCART616669.24096394879.296282.1433564REDISCCART616263.51036394734.392280REDISCCART616263.51036394734.392280REDISCCART616263.51036394734.392280REDISCCART616263.51036394734.392280REDISCCART616205.54876393676.594279.6891927REDISCCART615959.21236393183.921277.0655825REDISCCART615857.77976392633.287274.7556599REDISCCART615292.65496393662.104275.442357REDISCCART615292.65496393309.018270.361451REDISCCART615046.31856393309.018270.361451REDISCCART615292.65496393314.335268.3615621REDISCCART61533.26076393314.335268.3615621REDISCCART614205.87656393314.335268.3615621REDISCCART613916.06896393488.219268.3874131REDISCCART61335.02116394120.286269.9506486REDISCCART61325.02116394125.796267.051205REDISCCART612597.44456394502.546267.051205REDISCCART612916                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |          |                   |                         |
| REDISCCART613452.37686394299.68267.0016761REDISCCART615930.23156394314.171268.6331878REDISCCART6165930.23156394937.257277.194758REDISCCART616669.24096394879.296282.1433564REDISCCART616263.51036394734.392280REDISCCART616335.96216394430.094287.5908357REDISCCART61635.96216394067.834278.3464926REDISCCART615872.276394067.834278.3464926REDISCCART616205.54876393676.594279.6891927REDISCCART615959.21236393183.921277.0655825REDISCCART615959.2123639362.104275.442357REDISCCART615922.6549639362.104275.442357REDISCCART61533.2607639314.335271.7149778REDISCCART61533.2607639314.335268.3615621REDISCCART614205.8765639314.335268.3615621REDISCCART613916.06896393488.219268.3874131REDISCCART613365.4345639720.065269.9506486REDISCCART61325.02116394140.286268.80572REDISCCART612597.44456394502.546267.051205REDISCCART612597.44456394502.546267.051205REDISCCART61277.85796395111.142265.6311412REDISCCART </td <td>RE</td> <td>DISCCART</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RE  | DISCCART |                   |                         |
| REDISCCART613640.75176394314.171268.6331878REDISCCART615930.23156394937.257277.194758REDISCCART616669.24096394879.296282.1433564REDISCCART616263.51036394734.392280REDISCCART616335.96216394430.094287.5908357REDISCCART61635.96216394067.834278.3464926REDISCCART615872.276394067.834278.3464926REDISCCART615205.54876393676.594279.6891927REDISCCART615959.21236393183.921277.0655825REDISCCART615959.2123639362.104275.442357REDISCCART61592.65496393662.104275.442357REDISCCART61533.2607639314.335271.7149778REDISCCART615133.2607639314.335268.3615621REDISCCART614205.8765639314.335268.3615621REDISCCART613916.06896393488.219268.3874131REDISCCART613365.4345639720.065269.9506486REDISCCART61325.02116394140.286268.80572REDISCCART612597.44456394502.546267.051205REDISCCART612597.44456394502.546267.051205REDISCCART61277.85796395111.142265.6311412REDISCCART612916.23286396473.237276.0531963REDISCCART<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RE  | DISCCART | 613264.0019       | 6394401.113 267.3671044 |
| REDISCCART615930.23156394937.257277.194758REDISCCART616669.24096394879.296282.1433564REDISCCART616263.51036394734.392280REDISCCART616335.96216394430.094287.5908357REDISCCART615872.276394067.834278.3464926REDISCCART616205.54876393676.594279.6891927REDISCCART615959.21236393183.921277.0655825REDISCCART615959.21236393662.104275.442357REDISCCART615292.65496393662.104275.442357REDISCCART61533.2607639314.335271.7149778REDISCCART615133.2607639314.335268.3615621REDISCCART614205.8765639314.335268.3615621REDISCCART613916.06896393488.219268.3874131REDISCCART61335.02116394140.286268.80572REDISCCART61325.02116394125.796267.9227209REDISCCART612597.44456394502.546267.051205REDISCCART61277.85796395111.142265.6311412REDISCCART612916.23286396473.237276.0531963REDISCCART612713.36756396168.939274.2035842REDISCCART613379.92496395096.651272.4245138REDISCCART613365.43456394922.767271.3682289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RE  | DISCCART | 613452.3768       | 6394299.68 267.0016761  |
| REDISCCART615930.23156394937.257277.194758REDISCCART616669.24096394879.296282.1433564REDISCCART616263.51036394734.392280REDISCCART616335.96216394430.094287.5908357REDISCCART615872.276394067.834278.3464926REDISCCART616205.54876393676.594279.6891927REDISCCART615959.21236393183.921277.0655825REDISCCART615959.21236393662.104275.442357REDISCCART615292.65496393662.104275.442357REDISCCART61533.2607639314.335271.7149778REDISCCART615133.2607639314.335268.3615621REDISCCART614205.8765639314.335268.3615621REDISCCART613916.06896393488.219268.3874131REDISCCART61335.02116394140.286268.80572REDISCCART61325.02116394125.796267.9227209REDISCCART612597.44456394502.546267.051205REDISCCART61277.85796395111.142265.6311412REDISCCART612916.23286396473.237276.0531963REDISCCART612713.36756396168.939274.2035842REDISCCART613379.92496395096.651272.4245138REDISCCART613365.43456394922.767271.3682289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RE  | DISCCART | 613640.7517       | 6394314.171 268.6331878 |
| REDISCCART616669.24096394879.296282.1433564REDISCCART616263.51036394734.392280REDISCCART616335.96216394430.094287.5908357REDISCCART615872.276394067.834278.3464926REDISCCART616205.54876393676.594279.6891927REDISCCART615959.21236393183.921277.0655825REDISCCART615959.21236393662.104275.442357REDISCCART615292.65496393662.104275.442357REDISCCART615046.31856393039.018270.361451REDISCCART615133.2607639314.335271.7149778REDISCCART614205.8765639314.335268.3615621REDISCCART614394.2514639835.988269.302394REDISCCART613365.4345639720.065269.9506486REDISCCART61325.02116394140.286268.80572REDISCCART612597.44456394502.546267.051205REDISCCART612597.44456394502.546267.051205REDISCCART612916.23286396473.237276.0531963REDISCCART612916.23286396473.237276.0531963REDISCCART612713.36756396168.939274.2035842REDISCCART613379.92496395096.651272.4245138REDISCCART613365.43456394922.767271.3682289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |          |                   | 6394937.257 277.194758  |
| REDISCCART616263.51036394734.392280REDISCCART616335.96216394430.094287.5908357REDISCCART615872.276394067.834278.3464926REDISCCART616205.54876393676.594279.6891927REDISCCART615959.21236393183.921277.0655825REDISCCART615959.2123639362.104275.442357REDISCCART615292.65496393662.104275.442357REDISCCART615046.31856393039.018270.361451REDISCCART615133.2607639314.335271.7149778REDISCCART614205.8765639314.335268.3615621REDISCCART614394.2514639835.988269.302394REDISCCART613916.06896393488.219268.3874131REDISCCART61335.02116394140.286268.80572REDISCCART61325.02116394125.796267.9227209REDISCCART612597.44456394502.546267.051205REDISCCART61277.85796395111.142265.6311412REDISCCART612916.23286396473.237276.0531963REDISCCART612713.36756396168.939274.2035842REDISCCART613379.92496395096.651272.4245138REDISCCART613365.43456394922.767271.3682289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |          |                   |                         |
| REDISCCART616335.96216394430.094287.5908357REDISCCART615872.276394067.834278.3464926REDISCCART616205.54876393676.594279.6891927REDISCCART615959.21236393183.921277.0655825REDISCCART615959.21236393623.287274.7556599REDISCCART615292.65496393662.104275.442357REDISCCART615046.31856393039.018270.361451REDISCCART615133.2607639314.335271.7149778REDISCCART614205.8765639314.335268.3615621REDISCCART614394.2514639835.988269.302394REDISCCART613365.4345639720.065269.9506486REDISCCART61325.02116394140.286268.80572REDISCCART612597.44456394502.546267.051205REDISCCART612597.44456394502.546267.051205REDISCCART612916.23286396473.237276.0531963REDISCCART612713.36756396168.939274.2035842REDISCCART613379.92496395096.651272.4245138REDISCCART613365.43456394922.767271.3682289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |          |                   |                         |
| REDISCCART615872.276394067.834278.3464926REDISCCART616205.54876393676.594279.6891927REDISCCART615959.21236393183.921277.0655825REDISCCART615857.77976392633.287274.7556599REDISCCART615292.65496393662.104275.442357REDISCCART615046.31856393039.018270.361451REDISCCART615133.2607639314.335271.7149778REDISCCART614205.8765639314.335268.3615621REDISCCART614394.2514639835.988269.302394REDISCCART613916.06896393488.219268.3874131REDISCCART613355.43456393720.065269.9506486REDISCCART61325.02116394125.796267.9227209REDISCCART612597.44456394502.546267.051205REDISCCART61277.85796395111.142265.6311412REDISCCART612916.23286396473.237276.0531963REDISCCART612713.36756396168.939274.2035842REDISCCART613379.92496395096.651272.4245138REDISCCART613365.43456394922.767271.3682289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |          |                   |                         |
| RE         DISCCART         616205.5487         6393676.594         279.6891927           RE         DISCCART         615959.2123         6393183.921         277.0655825           RE         DISCCART         615857.7797         6392633.287         274.7556599           RE         DISCCART         615292.6549         6393662.104         275.442357           RE         DISCCART         615046.3185         6393039.018         270.361451           RE         DISCCART         615133.2607         6393314.335         271.7149778           RE         DISCCART         614205.8765         6393314.335         268.3615621           RE         DISCCART         614394.2514         6393835.988         269.302394           RE         DISCCART         613916.0689         6393488.219         268.3874131           RE         DISCCART         61365.4345         639720.065         269.9506486           RE         DISCCART         613756.6748         6394140.286         268.80572           RE         DISCCART         61325.0211         6394125.796         267.9227209           RE         DISCCART         612597.4445         6394502.546         267.051205           RE         DISCCART         612777.857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |          |                   |                         |
| RE         DISCCART         615959.2123         6393183.921         277.0655825           RE         DISCCART         615857.7797         6392633.287         274.7556599           RE         DISCCART         615292.6549         6393662.104         275.442357           RE         DISCCART         615046.3185         6393039.018         270.361451           RE         DISCCART         615133.2607         639314.335         271.7149778           RE         DISCCART         614205.8765         639314.335         268.3615621           RE         DISCCART         614394.2514         6393835.988         269.302394           RE         DISCCART         613916.0689         6393488.219         268.3874131           RE         DISCCART         613365.4345         639720.065         269.9506486           RE         DISCCART         61325.0211         6394140.286         268.80572           RE         DISCCART         61325.0211         6394125.796         267.9227209           RE         DISCCART         612597.4445         6394502.546         267.051205           RE         DISCCART         61277.8579         6395111.142         265.6311412           RE         DISCCART         612916.2328 </td <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |          |                   |                         |
| REDISCCART615857.77976392633.287274.7556599REDISCCART615292.65496393662.104275.442357REDISCCART615046.31856393039.018270.361451REDISCCART615133.2607639314.335271.7149778REDISCCART614205.8765639314.335268.3615621REDISCCART614394.25146393835.988269.302394REDISCCART613916.06896393488.219268.3874131REDISCCART613355.43456393720.065269.9506486REDISCCART613255.02116394140.286268.80572REDISCCART612597.44456394502.546267.051205REDISCCART61277.85796395111.142265.6311412REDISCCART612916.23286396473.237276.0531963REDISCCART612713.36756396168.939274.2035842REDISCCART613379.92496395096.651272.4245138REDISCCART613365.43456394922.767271.3682289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RE  | DISCCART | 616205.5487       | 6393676.594 279.6891927 |
| REDISCCART615857.77976392633.287274.7556599REDISCCART615292.65496393662.104275.442357REDISCCART615046.31856393039.018270.361451REDISCCART615133.2607639314.335271.7149778REDISCCART614205.8765639314.335268.3615621REDISCCART614394.25146393835.988269.302394REDISCCART613916.06896393488.219268.3874131REDISCCART613355.43456393720.065269.9506486REDISCCART613255.02116394140.286268.80572REDISCCART612597.44456394502.546267.051205REDISCCART61277.85796395111.142265.6311412REDISCCART612916.23286396473.237276.0531963REDISCCART612713.36756396168.939274.2035842REDISCCART613379.92496395096.651272.4245138REDISCCART613365.43456394922.767271.3682289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RE  | DISCCART | 615959.2123       | 6393183.921 277.0655825 |
| REDISCCART615292.65496393662.104275.442357REDISCCART615046.31856393039.018270.361451REDISCCART615133.26076393314.335271.7149778REDISCCART614205.87656393314.335268.3615621REDISCCART614394.25146393835.988269.302394REDISCCART613916.06896393488.219268.3874131REDISCCART61365.43456393720.065269.9506486REDISCCART613756.67486394140.286268.80572REDISCCART61325.02116394125.796267.9227209REDISCCART612597.44456394502.546267.051205REDISCCART612916.23286396473.237276.0531963REDISCCART612713.36756396168.939274.2035842REDISCCART613379.92496395096.651272.4245138REDISCCART613365.43456394922.767271.3682289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RE  | DISCCART | 615857.7797       | 6392633.287 274.7556599 |
| REDISCCART615046.31856393039.018270.361451REDISCCART615133.26076393314.335271.7149778REDISCCART614205.87656393314.335268.3615621REDISCCART614394.25146393835.988269.302394REDISCCART613916.06896393488.219268.3874131REDISCCART61365.43456393720.065269.9506486REDISCCART613756.67486394140.286268.80572REDISCCART613235.02116394125.796267.9227209REDISCCART612597.44456394502.546267.051205REDISCCART612727.85796395111.142265.6311412REDISCCART612916.23286396473.237276.0531963REDISCCART613379.92496395096.651272.4245138REDISCCART613365.43456394922.767271.3682289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RE  |          |                   |                         |
| REDISCCART615133.26076393314.335271.7149778REDISCCART614205.87656393314.335268.3615621REDISCCART614394.25146393835.988269.302394REDISCCART613916.06896393488.219268.3874131REDISCCART613365.43456393720.065269.9506486REDISCCART613756.67486394140.286268.80572REDISCCART61235.02116394125.796267.9227209REDISCCART612597.44456394502.546267.051205REDISCCART61277.85796395111.142265.6311412REDISCCART612916.23286396473.237276.0531963REDISCCART612713.36756396168.939274.2035842REDISCCART613379.92496395096.651272.4245138REDISCCART613365.43456394922.767271.3682289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |          |                   |                         |
| REDISCCART614205.87656393314.335268.3615621REDISCCART614394.25146393835.988269.302394REDISCCART613916.06896393488.219268.3874131REDISCCART613365.43456393720.065269.9506486REDISCCART613756.67486394140.286268.80572REDISCCART613235.02116394125.796267.9227209REDISCCART612597.44456394502.546267.051205REDISCCART612717.85796395111.142265.6311412REDISCCART612916.23286396473.237276.0531963REDISCCART612713.36756396168.939274.2035842REDISCCART613379.92496395096.651272.4245138REDISCCART613365.43456394922.767271.3682289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |          |                   |                         |
| REDISCCART614394.25146393835.988269.302394REDISCCART613916.06896393488.219268.3874131REDISCCART613365.43456393720.065269.9506486REDISCCART613756.67486394140.286268.80572REDISCCART613235.02116394125.796267.9227209REDISCCART612597.44456394502.546267.051205REDISCCART612727.85796395111.142265.6311412REDISCCART612916.23286396473.237276.0531963REDISCCART612713.36756396168.939274.2035842REDISCCART613379.92496395096.651272.4245138REDISCCART613365.43456394922.767271.3682289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |          |                   |                         |
| REDISCCART613916.06896393488.219268.3874131REDISCCART613365.43456393720.065269.9506486REDISCCART613756.67486394140.286268.80572REDISCCART613235.02116394125.796267.9227209REDISCCART612597.44456394502.546267.051205REDISCCART612727.85796395111.142265.6311412REDISCCART612916.23286396473.237276.0531963REDISCCART612713.36756396168.939274.2035842REDISCCART613379.92496395096.651272.4245138REDISCCART613365.43456394922.767271.3682289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RE  | DISCCART |                   |                         |
| REDISCCART613365.43456393720.065269.9506486REDISCCART613756.67486394140.286268.80572REDISCCART613235.02116394125.796267.9227209REDISCCART612597.44456394502.546267.051205REDISCCART612727.85796395111.142265.6311412REDISCCART612916.23286396473.237276.0531963REDISCCART612713.36756396168.939274.2035842REDISCCART613379.92496395096.651272.4245138REDISCCART613365.43456394922.767271.3682289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RE  | DISCCART | 614394.2514       | 6393835.988 269.302394  |
| REDISCCART613365.43456393720.065269.9506486REDISCCART613756.67486394140.286268.80572REDISCCART613235.02116394125.796267.9227209REDISCCART612597.44456394502.546267.051205REDISCCART612727.85796395111.142265.6311412REDISCCART612916.23286396473.237276.0531963REDISCCART612713.36756396168.939274.2035842REDISCCART613379.92496395096.651272.4245138REDISCCART613365.43456394922.767271.3682289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RE  | DISCCART | 613916.0689       | 6393488.219 268.3874131 |
| REDISCCART613756.67486394140.286268.80572REDISCCART613235.02116394125.796267.9227209REDISCCART612597.44456394502.546267.051205REDISCCART612727.85796395111.142265.6311412REDISCCART612916.23286396473.237276.0531963REDISCCART612713.36756396168.939274.2035842REDISCCART613379.92496395096.651272.4245138REDISCCART613365.43456394922.767271.3682289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |          |                   |                         |
| REDISCCART613235.02116394125.796267.9227209REDISCCART612597.44456394502.546267.051205REDISCCART612727.85796395111.142265.6311412REDISCCART612916.23286396473.237276.0531963REDISCCART612713.36756396168.939274.2035842REDISCCART613379.92496395096.651272.4245138REDISCCART613365.43456394922.767271.3682289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |          |                   |                         |
| REDISCCART612597.44456394502.546267.051205REDISCCART612727.85796395111.142265.6311412REDISCCART612916.23286396473.237276.0531963REDISCCART612713.36756396168.939274.2035842REDISCCART613379.92496395096.651272.4245138REDISCCART613365.43456394922.767271.3682289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |          |                   |                         |
| REDISCCART612727.85796395111.142265.6311412REDISCCART612916.23286396473.237276.0531963REDISCCART612713.36756396168.939274.2035842REDISCCART613379.92496395096.651272.4245138REDISCCART613365.43456394922.767271.3682289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |          |                   |                         |
| REDISCCART612916.23286396473.237276.0531963REDISCCART612713.36756396168.939274.2035842REDISCCART613379.92496395096.651272.4245138REDISCCART613365.43456394922.767271.3682289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |          |                   |                         |
| REDISCCART612713.36756396168.939274.2035842REDISCCART613379.92496395096.651272.4245138REDISCCART613365.43456394922.767271.3682289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RE  | DISCCART |                   |                         |
| RE DISCCART 613379.9249 6395096.651 272.4245138<br>RE DISCCART 613365.4345 6394922.767 271.3682289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RE  | DISCCART | 612916.2328       | 6396473.237 276.0531963 |
| RE DISCCART 613379.9249 6395096.651 272.4245138<br>RE DISCCART 613365.4345 6394922.767 271.3682289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RE  | DISCCART | 612713.3675       | 6396168.939 274.2035842 |
| RE DISCCART 613365.4345 6394922.767 271.3682289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |          |                   |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |          |                   |                         |
| VE DISCOULT OIAO21.222 0324035.232 5/1.35232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |          |                   |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ι\Ľ | DISCOARI | 5110J1.JJ1J       |                         |

#### ALKANE RESOURCES LTD Tomingley Gold Project

Tomingley Gold Project Report No. 616/06

| RE DISC | CART 614060 | 0.9727 6394227.229 269.4319889 |
|---------|-------------|--------------------------------|
| RE DISC | CART 614582 | 2.6263 6394546.017 272.173737  |
| RE DISC | CART 612553 | 3.9733 6393850.479 265.549313  |
| RE DISC |             | 1.329 6393546.181 265.9380545  |
| RE DISC | CART 613249 | 9.5115 6393328.825 264.4309669 |
| RE DISC |             | 4.4438 6392705.739 268.8039949 |
| RE DISC |             | 1.2222 6392604.306 273.7028234 |
| RE DISC |             | 1.2508 6392140.614 280.38052   |
| RE DISC |             | 9.8467 6392894.114 280.0057958 |
|         |             |                                |
| RE DISC |             | 1.2793 6393618.633 282.6693734 |
| RE DISC |             | 2.712 6394444.584 284          |
| RE DISC |             |                                |
| RE DISC |             | 7.0596 6395473.401 269.1683848 |
| RE DISC | CART 612785 | 5.8194 6395777.699 270.141806  |
| RE DISC | CART 613264 | 4.0019 6395893.622 270.9591796 |
| RE DISC | CART 612539 | 9.4829 6394777.863 265.8660333 |
| RE DISC | CART 611974 | 4.3582 6394748.882 264.743582  |
| RE DISC | CART 614799 | 9.982 6393850.479 269.9806617  |
| RE DISC | CART 615423 | 3.0683 6394502.546 273.205223  |
| RE DISC | CART 613887 | 7.0882 6393053.508 266.4484551 |
| RE DISC | CART 612901 | 1.7424 6394922.767 272.737482  |
| RE DISC | CART 615785 | 5.3278 6394748.882 276.3611773 |
| RE DISC | CART 615423 | 3.0683 6394140.286 272.7576041 |
| RE DISC | CART 616466 | 6.3756 6394111.306 286.5156163 |
| RE DISC | CART 612568 | 8.4637 6392749.21 265.3045457  |
| RE DISC |             | 2.3557 6396284.862 306.767911  |
| RE DISC |             | 9.7399 6396458.747 301.992218  |
| RE DISC |             | 8.4637 6399371.313 275.824027  |
| RE DISC |             | 6.8672 6398603.323 278.635442  |
| RE DISC |             | 8.9342 6399719.082 283.4162922 |
| RE DISC |             | 0.5667 6395908.112 307.9923477 |
| RE DISC |             | 7.6443 6392357.97 295.602704   |
| RE DISC |             | 4.5792 6389996.038 260.8937317 |
| RE DISC |             | 3.118 6391198.739 257.15621    |
|         |             |                                |
| RE DISC |             | 0.1533 6396545.689 302.6080918 |
| RE DISC |             | 3.6667 6399994.399 264.8533667 |
| RE DISC |             | 2.0279 6399994.399 308.948817  |
| RE DISC |             | 2.0279 6389503.365 312.986629  |
| RE DISC |             | 3.6667 6389503.365 250.1381663 |
| RE DISC |             |                                |
| RE DISC |             | 3 6392345 261.2745             |
| RE DISC | CART 613510 | 0 6394587 268.983              |
| RE DISC | CART 612493 | 3 6398208 272.85               |
| RE DISC | CART 614081 | 1 6398014 279.9132             |
| RE DISC | CART 615163 | 3 6396780 283.964              |
| RE DISC | CART 615544 | 4 6396853 283.8568             |
| RE DISC | CART 616485 | 5 6397927 292.528              |
| RE DISC | CART 614419 | 9 6396337 278.6897             |
| RE DISC | CART 614450 | 0 6396155 279.275              |
| RE DISC | CART 614668 | 8 6395976 279.8432             |
|         |             | 4 6395908 278.8848             |
| RE DISC |             | 6 6395898 277.72               |
|         |             | 3 6395845 280.0585             |
|         |             | 3 6395776 279.6652             |
|         |             | 6 6395740 279.456              |
|         |             | 3 6395702 279.2674             |
|         |             | 6 6395656 277.9376             |
|         |             | 7 6395611 277.0787             |
| RE DISC |             | 6 6395597 277.9912             |
|         |             | 8 6395646 278.6256             |
|         |             | 6 6395623 278.3036             |
|         |             | 3 6395516 277.6136             |
|         |             | 6 6395369 278.41               |
|         |             | 6 6395296 277.3864             |
|         |             | 3 6395292 278.3608             |
|         | 011/00      |                                |
|         |             |                                |

| RE | DISCCART | 614750 63953                           | 50 278.3                                |
|----|----------|----------------------------------------|-----------------------------------------|
| RE | DISCCART | 614886 63954                           | 07 279.6696                             |
| RE | DISCCART | 614763 63954                           | 35 278.28                               |
| RE | DISCCART | 614747 63957                           | 01 280.94                               |
| RE | DISCCART | 614731 63957                           | 55 280.62                               |
| RE | DISCCART | 614753 63957                           | 35 281.06                               |
| RE | DISCCART | 614880 63958                           | 30 281.24                               |
|    |          | 614925 63959                           |                                         |
|    |          | 615070 63959                           |                                         |
|    |          |                                        | 52 276.7758246                          |
|    |          |                                        |                                         |
|    |          | 611757 63957                           |                                         |
|    |          |                                        | 54 277.0730647                          |
|    |          |                                        | 97 291.9225996                          |
| RE | DISCCART | 614463 63905                           | 94 268.2821999                          |
| RE | DISCCART | 611773 63923                           | 45 261.2745                             |
| RE | DISCCART | 613510 63945                           | 37 269.9641707                          |
| RE | DISCCART | 612493 63982                           | 08 272.85                               |
| RE | DISCCART | 614081 63980                           | L4 279.9132002                          |
| RE | DISCCART | 615163 63967                           | 30 283.9640001                          |
| RE | DISCCART | 615544 63968                           | 53 283.8568                             |
|    |          | 616485 63979                           |                                         |
|    |          |                                        | 37 278.6897002                          |
|    |          |                                        |                                         |
|    |          |                                        | 55 279.8708185                          |
|    |          |                                        | 76 237.0803852                          |
|    |          |                                        | 08 246.8419454                          |
|    |          | 614536 63958                           |                                         |
| RE | DISCCART | 614673 63958                           | 15 172.8642873                          |
| RE | DISCCART | 614673 63957                           | 76 241.893587                           |
| RE | DISCCART | 614666 63957                           | 10 236.6237674                          |
| RE | DISCCART | 614663 63957                           | 02 238.4042548                          |
| RE | DISCCART | 614596 63956                           | 56 137.1817445                          |
| RE | DISCCART | 614517 63956                           | L1 246.6766685                          |
| RE | DISCCART | 614596 63955                           | 97 104.1266552                          |
|    |          |                                        | 46 246.4579604                          |
| RE | DISCCART | 614666 63956                           | 23 243.0928216                          |
|    |          |                                        | 16 111.3538573                          |
|    |          |                                        | 59 278.293483                           |
|    |          |                                        | 96 277.4530681                          |
|    |          |                                        | 92 278.1353376                          |
|    |          |                                        |                                         |
|    |          |                                        | 50 278.5180865                          |
|    |          |                                        | 07 279.9823131                          |
|    |          |                                        | 35 250.9928827                          |
|    |          |                                        | 01 256.2923406                          |
|    |          |                                        | 55 281.7499403                          |
| RE | DISCCART | 614753 63957                           | 35 290.3765903                          |
| RE | DISCCART | 614880 63958                           | 30 253.1073341                          |
| RE | DISCCART | 614925 63959                           | 13 280.8952381                          |
| RE | DISCCART | 615070 63959                           | 95 279.6347949                          |
| RE | DISCCART | 614569 63955                           | 08 268.5887966                          |
| RE | FINISHED |                                        |                                         |
|    |          |                                        |                                         |
| ME | STARTING |                                        |                                         |
|    |          | $C \cdot \setminus Tobs \setminus 336$ | BA\ISC\TGP03 TAPMobs.isc                |
|    |          | 10 METERS                              | 1100 (101 00_1110000.100                |
|    |          | 99999 2003                             |                                         |
|    |          |                                        |                                         |
|    |          | 99999 2003                             |                                         |
| ME | FINISHED |                                        |                                         |
|    |          |                                        |                                         |
| OU | STARTING |                                        |                                         |
|    | RECTABLE | ALLAVE FIR                             | ST-SECOND                               |
|    | MAXTABLE | ALLAVE 50                              |                                         |
|    |          |                                        | C:\Jobs\3363A\ISC\Scenario2\FP1D.PLO    |
|    | PLOTFILE | 24 CM FIRST                            | C:\Jobs\3363A\ISC\Scenario2\CM1D.PLO    |
|    | PLOTFILE | 24 REST FIR                            | ST C:\Jobs\3363A\ISC\Scenario2\RE1D.PLO |
|    | PLOTFILE | PERIOD FP                              | C:\Jobs\3363A\ISC\Scenario2\FP1Y.PLO    |
|    | PLOTFILE | PERIOD CM                              | C:\Jobs\3363A\ISC\Scenario2\CM1Y.PLO    |
|    | PLOTFILE | PERIOD RES                             |                                         |
| OU | FINISHED |                                        |                                         |
|    |          |                                        |                                         |

This page has intentionally been left blank

# **Appendix 5**

6 - 129

# **Director-General's Requirements**

(No. of pages including blank pages = 4)

PAEHolmes

This page has intentionally been left blank

## Table A4.1

## Air Quality

## Coverage of Director-General's Requirements in the *Environmental Assessment*

Page 1 of 2

| Government<br>Agency | Paraphrased Requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Relevant<br>Section(s) |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
|                      | GENERAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |
|                      | Air Quality;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |
|                      | AIR QUALITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |
| DECCW<br>(28/08/09)  | <ul> <li>Identify all sources of air emissions from the development.</li> <li>Note: emissions can be classed as either:</li> <li>point (e.g. emissions from stack or vent) or</li> <li>fugitive (from wind erosion, leakages or spillages, associated with loading or unloading, conveyors, storage facilities, plant and yard operation, vehicle movements (dust from road, exhausts, loss from load), land clearing and construction works).</li> </ul>                                                                     | Section 7              |
|                      | <ul> <li>Provide details of the project that are essential for predicting and assessing air impacts including:</li> <li>a) the quantities and physio-chemical parameters (e.g. concentration, moisture content, bulk density, particle sizes etc.) of materials to be used, transported, produced or stored</li> <li>b) an outline of procedures for handling, transport, production and storage</li> <li>c) the management of solid, liquid and gaseous waste streams with potential for significant air impacts.</li> </ul> | Section 2              |
|                      | Describe the topography and surrounding land uses. Provide details of the exact locations of dwellings, schools and hospitals. Where appropriate provide a perspective view of the study area such as the terrain file used in dispersion models.                                                                                                                                                                                                                                                                             | Section 2              |
|                      | Describe surrounding buildings that may affect plume dispersion.                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A                    |
|                      | <ul> <li>Provide and analyse site representative data on following meteorological parameters:</li> <li>d) temperature and humidity</li> <li>e) rainfall, evaporation and cloud cover</li> <li>f) wind speed and direction</li> <li>g) atmospheric stability class</li> <li>h) mixing height (the height that emissions will be ultimately mixed in the atmosphere)</li> </ul>                                                                                                                                                 | Section 4              |
|                      | <ul><li>i) katabatic air drainage</li><li>j) air re-circulation.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |

## Table A4.1

### Air Quality

### Coverage of Director-General's Requirements in the Environmental Assessment

Page 2 of 2

| Government<br>Agency | Paraphrased Requirement                                                                                                                                                                                                                                                                                         | Relevant<br>Section(s) |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| DECCW<br>(28/08/09)  | Provide a description of existing air quality and meteorology, using existing information and site representative ambient monitoring data.                                                                                                                                                                      | Section 5              |
| (20,00,00)           | Identify all pollutants of concern and estimate emissions by quantity (and size for particles), source and discharge point.                                                                                                                                                                                     | Section 7              |
|                      | Estimate the resulting ground level concentrations of all pollutants.<br>Where necessary (e.g. potentially, significant impacts and complex<br>terrain effects), use an appropriate dispersion model to estimate<br>ambient pollutant concentrations. Discuss choice of model and<br>parameters with the DECCW. | Section 8              |
|                      | Describe the effects and significance of pollutant concentration on the environment, human health, amenity and regional ambient air quality standards or goals.                                                                                                                                                 | Section 8              |
|                      | Describe the contribution that the development will make to regional and global pollution, particularly in sensitive locations.                                                                                                                                                                                 | Section 10             |
|                      | For potentially odorous emissions provide the emission rates in terms<br>of odour units (determined by techniques compatible with<br>EPA/DECCW procedures). Use sampling and analysis techniques for<br>individual or complex odours and for point or diffuse sources, as<br>appropriate.                       | N/A                    |
|                      | Outline specifications of pollution control equipment (including<br>manufacturers performance guarantees where available) and<br>management protocols for both point and fugitive emissions. Where<br>possible, this should include cleaner production processes.                                               | Section 9              |
|                      | CUMULATIVE IMPACTS                                                                                                                                                                                                                                                                                              |                        |
| DECCW<br>(28/08/09)  | Identify the extent that the receiving environment is already stressed by existing development and background levels of emissions to which this proposal will contribute.                                                                                                                                       | Section 5              |
|                      | Assess the impact of the proposal against the long term air, noise and water quality objectives for the area or region.                                                                                                                                                                                         | Section 8              |
|                      | Identify infrastructure requirements flowing from the proposal (eg. water and sewerage services, transport infrastructure upgrades).                                                                                                                                                                            | Section 2              |
|                      | Assess likely impacts from such additional infrastructure and measures reasonably available to the proponent to contain such requirements or mitigate their impacts (e.g. travel demand management strategies).                                                                                                 | N/A                    |