

Tomingley Gold Operations

Traffic Management Plan

Tomingley Gold Operations

Traffic Management Plan

TABLE OF REVISIONS

Revision Number	Revision Date	Prepared By	Approved by	Comments
Revision 1	August 2012	Geolyse	Colleen Measday	Submitted for Approval
Revision 2	October 2012	Colleen Measday	Michael Sutherland	Updated following consultation with RMS and NSC
Revision 3	February 2015	Mark Williams	Sean Buxton	Annual Review
Revision 3	February 2015	Mark Williams	Sean Buxton	Annual Review
Revision 4	September 2016	Mark Williams	Sean Buxton	Review following Mod 3

TABLE OF CONTENTS

1.	INTR	ODUCTION AND SCOPE	. 1
	1.1	BACKGROUND	. 1
	1.2	PROJECT APPROVAL	. 1
	1.3	PURPOSE OF REPORT	. 2
	1.4	LEGISLATION	. 2
	1.5	CONSULTATION	. 2
		1.5.1 Roads and Maritime Safety and Narromine Shire Council	
		1.5.2 NSC Traffic Committee	. 2
2.	EXTE	ERNAL ROAD NETWORK	. 2
	2.1	NEWELL HIGHWAY UNDERPASS	. 3
3.	TRAI	FFIC DETAILS	. 3
	3.1	VEHICLE TRAFFIC TYPES	. 3
	3.2	TRAFFIC VOLUMES	. 4
	3.3	TRAFFIC THROUGH TOMINGLEY VILLAGE	. 5
4.	MAN	AGEMENT MEASURES	. 5
	4.1	INTERSECTION OF THE NEWELL HIGHWAY AND THE NARROMINE-TOMINGLEY ROAD	. 5
	4.2	INTERSECTION OF TOMINGLEY WEST ROAD AND THE NARROMINE-TOMINGLEY ROAD	. 5
	4.3	UPGRADING OF TOMINGLEY WEST ROAD	. 6
	4.4	INTERSECTION OF TOMINGLEY WEST ROAD AND THE MAIN SITE ACCESS ROAD	. 6
	4.5	COMMUNITY INFORMATION	. 6
	4.6	TRAFFIC INCIDENT MANAGEMENT	. 6
	4.7	EMERGENCY ACCESS ROADS	. 7
	4.8	RESTRICTED ACCESS VEHICLES	. 7
5.	TRAI	FFIC MANAGEMENT PLAN OPERATION	. 8
	5.1	ROLES AND RESPONSIBILITIES	٤ .
	5.2	TRAFFIC MANAGEMENT PLAN AUDIT	٤ .
	5.3	TRAFFIC MANAGEMENT PLAN REVIEW	. 8
6.	СОМ	PETENCE TRAINING AND AWARENESS	٤.
7	DEE	EDENCES	c

Report No. 616/06

Part 7: Traffic Impact Assessment

1. INTRODUCTION AND SCOPE

1.1 BACKGROUND

The Traffic Management Plan has been prepared as a tool to manage traffic related issues during the construction and operation of the Tomingley Gold Operations (TGO). It will be used by TGO personnel as the first point of reference for traffic management related issues.

The Traffic Management Plan sits under the overarching Environmental Management Strategy for the project. The other Environmental Management Plans include:

- Air Quality and Greenhouse Gas Management Plan;
- Blast Management Plan;
- Biodiversity Management Plan;
- Cultural Heritage Management Plan;
- Rehabilitation Management Plan;
- Hazardous Materials Management Plan; and
- Water Management Plan.

1.2 PROJECT APPROVAL

The Tomingley Gold Project was granted Project Approval by the NSW Department of Planning and Infrastructure on 24th July 2012 (Approval Reference 09_0155). Tomingley Gold Operations Pty Ltd has developed the Tomingley Gold Mine at Tomingley in Central West NSW.

Schedule 3, Condition No. 44 of the Project Approval states:

"Traffic Management Plan

The Proponent shall prepare and implement a Traffic Management Plan to the satisfaction of the Secretary. The plan shall:

- (a) focus on traffic management along Tomingley West Road and through the village of Tomingley to minimise the potential for conflicts between project-related traffic and other road users;
- (b) describe the measures to be implemented to ensure the effective operation of the intersections between the project site and the Newell Highway, including the site access road and Tomingley West Road intersection and the Tomingley-Narromine Road and Newell Highway intersection; and
- (c) be developed in consultation with Council and RMS, and must be submitted for the approval of the Secretary prior to the commencement of construction."

It should be noted that whilst Condition No. 44 (b) requires traffic measures to be implemented at specific intersections, Tomingley West Road does not intersect the Newell Highway directly. The Tomingley West Road intersects the Tomingley-Narromine Road which then intersects with the Newell Highway.

1.3 PURPOSE OF REPORT

This Traffic Management Plan has been prepared to document the off-site traffic management measures that are to be implemented during the operational of the TGO in order to minimise traffic associated risks for traffic accessing the mine facility and general traffic interacting with mine generated traffic.

7 - 2

It will also ensure that traffic generated as a result of the TGO will move in a safe manner with least impact to Tomingley Village.

The implementation of the Traffic Management Plan will minimise the traffic related risks for the TGO employees, contractors, the general public and other vehicle operators on the wider road network surrounding the TGO.

1.4 LEGISLATION

In NSW the *Road Transport (Safety and Traffic Management) Act 1999*, governs the safe management of road transport and will be complied with and referred to during the operation of TGO.

In addition to this act, the following Standards and Guidelines will also guide traffic management for the project.

- Austroads Guide to Road Design
- RMS Supplements to Austroads Guide to Road Design
- Australian Standard AS1742- Manual of Uniform Traffic Control Devices

1.5 CONSULTATION

1.5.1 Roads and Maritime Safety and Narromine Shire Council

This plan has been developed in consultation with NSW Transport, Roads and Maritime Services (RMS) and Narromine Shire Council (NSC).

Revision 1 of the TMP was presented to both parties and Revision 2 was prepared following feedback from both agencies.

Revision 1 was presented to NSC on 15/08/2012 at a meeting held in their offices. They had very few comments and deemed the plan to be adequate. A copy of the minutes from this meeting is included in Appendix A

Revision 1 of the TMP was presented to RMS on 17/08/2012 at a meeting held in their office. RMS distributed the plan to parties within the agency and formal comments were issued to TGO via email on 18/09/2012. These minutes and comments are included in Appendix A of this plan.

1.5.2 NSC Traffic Committee

Proposed details of the Traffic Management signage to be installed as part of this plan will be forwarded to the NSC Traffic Committee for discussion.

2. EXTERNAL ROAD NETWORK

The Main Site Access Road to the TGO has been constructed off Tomingley West Road. Vehicle traffic access TGO via three (3) main routes:

- i) To/from Dubbo via the Newell Highway, Tomingley-Narromine Road and Tomingley West Road:
- ii) To/from Peak Hill and Parkes via the Newell Highway, Tomingley-Narromine Road and Tomingley West Road; and

Tomingley Gold Project Report No. 616/06

iii) To/from Narromine via Tomingley-Narromine Road and Tomingley West Road.

A fourth route that may be used at some time is access from the Newell Highway via Bulgandramine Road, however very few vehicles will use this route. This route would only be used is in the event of a traffic accident on the Newell Highway blocking traffic attempting to access the site from the south. This scenario would be very rare and in the event of its occurrence the existing route can adequately accommodate existing traffic and any mine generated traffic.

The Newell Highway (State Highway No. 17) under the control of RMS, the Tomingley-Narromine Road (Main Road No. 89) is a state road under the control of the NSC and the Tomingley West Road is a local road under the control of NSC.

Tomingley West Road is a two lane, two way undivided corridor. The current sealed pavement along the carriageway is approximately 3.5m to 4m wide. The road is not centreline or edge line marked and there are minimal guideposts along the road.

The initial section of Tomingley West Road, for approximately 260m west from its intersection with the Tomingley-Narromine Road is speed limited to 60km/h, whilst the remainder of Tomingley West Road is speed limited to 100km/h.

As part of the development of the TGO, the Tomingley West Road has been upgraded by widening and strengthening the road pavement to cater for the traffic loads generated by the proposed mine.

The Tomingley West Road and the Narromine-Tomingley Road intersection currently complies with an Auxiliary Right Turn (AUR) intersection in accordance with the RTA Road Design Guide.

The Narromine-Tomingley Road is a two lane two way bitumen sealed rural road with a sealed width of 6.5m with gravel shoulders varying from 1.0m to 2.0m wide. The Narromine-Tomingley Road is speed limited to 80km/h for approximately 460m from its intersection with the Newell Highway whilst the remainder of the Narromine-Tomingley Road is speed limited to 100km/h.

The Newell Highway and the Narromine-Tomingley Road intersection currently complies with an Auxiliary Right Turn (AUR) intersection combined with an Auxiliary Left Turn (AUL) lane in accordance with the RTA Road Design Guide.

The Newell Highway is a two lane two way State Highway with a sealed width of 11m comprising 2 x 3.5m wide travel lanes and 2 x 2m wide sealed shoulders. The Newell Highway is speed limited to 110km/h outside the village of Tomingley and 50km/h within Tomingley whilst at the intersection with the Narromine-Tomingley Road the Newell Highway is speed limited to 80km/h.

2.1 NEWELL HIGHWAY UNDERPASS

A heavy mine vehicle underpass has been excavated and constructed under the Newell Highway south of Tomingley Village. The Newell Highway underpass has been designed and constructed in accordance with the RMS design criteria and standards. Screens have been installed adjacent to, and either side of, the underpass to prevent driver distraction.

Design drawings of the underpass and Newell Highway diversion are attached in Appendix B

3. TRAFFIC DETAILS

3.1 VEHICLE TRAFFIC TYPES

The vehicle types accessing the TGO would include:

- Light vehicles such as passenger vehicles and light delivery trucks;
- Heavy vehicles such as large rigid trucks and semi-trailers;
- Oversize and overweight vehicles used for the infrequent delivery of plant components and mine operation vehicles throughout the life of the mine.

ALKANE RESOURCES LTD Tomingley Gold Project Report No. 616/06

3.2 TRAFFIC VOLUMES

The generation of traffic from the development of the TGO was assessed for the preparation of the Traffic Impact Assessment included in the Environmental Assessment for the project and was prepared by FJF Group Pty Ltd.

The anticipated traffic generated by the TGO for the operational phases determined in the FJF Group Report is summarised in Table 3.1.

Table 3.1 – Anticipated Traffic Generation for the Tomingley Gold Operations

Route	Daily Traffic Light Vehicle Volume	Daily Traffic Heavy Vehicle Volume	
Operations			
Newell Highway	102 veh/day	6 veh/day	
Narromine-Tomingley Road	34 veh/day	2 veh/day	
Tomingley West Road	136 veh/day	8 veh/day	

Traffic counts were also conducted on behalf of the FJF Group to determine the existing traffic volumes on the road network surrounding the TGO site. The existing traffic volumes and the traffic generated by the TGO were assessed to determine the increase in traffic volumes due to the construction and operation of the mine.

The assessment of the increase in traffic volume on the surrounding road network as determined in the FJF Group Report is summarised in Table 3.2.

Table 3.2 – Increase in Traffic Volumes due to the Development of the Tomingley Gold Operations

Road	Current Traffic		Project Generated Traffic		% Increase		
	Light Vehicle	Heavy Vehicle	Light Vehicle	Heavy Vehicle	Light Vehicle	Heavy Vehicle	All Traffic
Operations							
Newell Highway	2250 v/d	1125 v/d	102 v/d	6 v/d	4.5%	0.5%	3.2%
Narromine-Tomingley Road	349 v/d	149 v/d	34 v/d	2 v/d	9.7%	1.3%	7.2%
Tomingley West Road	49 v/d	25 v/d	136 v/d	8 v/d	377.6%	32.0%	294.6%
NOTES: Project Operation assumes estimated current existing traffic project to the Year 2020.							

The FJF Group Report concluded that increases to traffic flow on the:

- Newell Highway would be minimal (<6%) and would have no impact on traffic flows, which is currently well below the capacity of this road.
- Tomingley-Narromine Road and Tomingley West Road would be 16.5%, and the overall traffic volumes on this road would still be minor.
- Tomingley West Road would be 333%; however, the road will be adequate with upgrade to ensure pavement width and strength meet the required RMS engineering standard.

Intersection assessments were carried out for the intersections of:

- Newell Highway and Narromine-Tomingley Road; and
- Narromine-Tomingley Road and Tomingley West Road.

These assessments determined that both the intersections would operate efficiently following the development of the TGO and that no additional mitigation measures were required to be constructed.

Part 7: Traffic Impact Assessment

However, additional signs have been provided at each intersection to assist in the management of traffic using these intersections and the various other components of the external road network servicing the TGO.

3.3 TRAFFIC THROUGH TOMINGLEY VILLAGE

An assessment of traffic through Tomingley Village showed that the increase in traffic on the Newell Highway as a result of the project would be "negligible". The assessment indicated increased movement along the Newell Highway would increase by 3.2% during operations. However the increase in traffic through Tomingley village will be dependent upon the direction from which the workforce and materials travel. The majority of the workforce and materials travelling to site will come from the north (Dubbo/Narromine) and increase in traffic through Tomingley Village will be less than 1.6%.

All on site movements between Wyoming and Caloma during operations are via the Newell Highway underpass and therefore will result in no increase in traffic through the Tomingley village.

4. MANAGEMENT MEASURES

Traffic management measures to be implemented to manage external traffic movements associated with the TGO are outlined in the following sections of this report.

As a requirement of Project Approval, TGO will ensure that heavy vehicle movements associated with mining operations do not exceed 8 per day (4 in and 4 out) when measured as a daily average over any calendar month.

4.1 INTERSECTION OF THE NEWELL HIGHWAY AND THE NARROMINE-TOMINGLEY ROAD

As the existing intersection layout caters for the mine increased volumes of light and heavy vehicle numbers using the Newell Highway and the initial section of the Narromine-Tomingley Road, it is not proposed to install any traffic mitigation measures at this intersection.

Advance intersection warning signs on the Narromine-Tomingley Road are installed on the approach to the intersection with the Newell Highway and a bi-directional chevron hazard marker is installed at the intersection.

Directional signage indicating the turn off from the Newell Highway to the TGO have been installed at the intersection in conjunction with the existing Narromine directional sign.

Details of the existing and proposed traffic management measures implemented for the Newell Highway and the Narromine-Tomingley intersection are indicated on Drawing 01G_E19 included in Appendix B.

4.2 INTERSECTION OF TOMINGLEY WEST ROAD AND THE NARROMINE-TOMINGLEY ROAD

The signage at the intersection of Tomingley West Road and the Narromine -Tomingley Road have been upgraded to include directional signage for the TGO, warning signs for turning truck movements and advance warning signs on the approach to the intersection.

The major box culvert on Tomingley West Road approximately 100m west of the intersection with the Narromine Tomingley Road has had a concrete lip installed on each side of the culvert.

Two new street lights were installed at the intersection of the Tomingley West Road and Narromine - Tomingley Road in accordance with the Planning Agreement between Narromine Shire Council and Tomingley Gold Operations.

Details of the existing and proposed traffic management measures implemented for the Tomingley West Road and the Narromine -Tomingley intersection are indicated on Drawing 01G_E19 included in Appendix B of this Report.

Tomingley Gold Project Report No. 616/06

4.3 UPGRADING OF TOMINGLEY WEST ROAD

The eastern section of the Tomingley West Road (as far as TGO entrance road) has been upgraded and widened to a double lane, sealed road. The pavement has been strengthened so that it is capable of taking road trains. Detailed design drawings including signage and line marking are included in Appendix B of this report (Drawings 01G_E01 – 01G_E19).

4.4 INTERSECTION OF TOMINGLEY WEST ROAD AND THE MAIN SITE ACCESS ROAD

The intersection of the Tomingley West Road and the Main Site Access Road has been designed to accommodate the safe movement of vehicles on and off site. The design also includes directional signage for the Tomingley Gold Project, warning signs for turning truck movements and advance warning signs on all approaches to the intersection.

Details of the proposed traffic management measures implemented for the Tomingley West Road and the Main Site Access Road intersection along with detailed design for the intersection are included in Appendix B of this report on drawings 01C_E18 and 01C_E19.

4.5 COMMUNITY INFORMATION

The community of Tomingley and general road users are kept informed about traffic related issues via the following avenues:

- TGO information board within Tomingley Village;
- TGO information board at the truck rest station on the Newell Highway at Tomingley; and
- Information distributed through the Community Consultation Committee.
- Meetings with Narromine Shire Council during the project approval modification process where necessary.

The Information Notice Boards will indicate progress on the construction of the various components of the road infrastructure, expected completion dates and any delays that might be experienced due to such construction works being carried out.

A copy of the Traffic Management Plan is available on the Project Website www.alkane.com.au/tomingley Other avenues for the local community and general road users to obtain information include;

- TGO Project Website,
- The 24-hour TGO Community Information Line Number: 02 6865 6116;
- The project email address is info@tomingleygold.com.au.

This phone number and email address allow the public to gain access to information, make an enquiry or a complaint at any time.

TGO will also operate an open door policy so that members of the public are welcome to come to the site office to get information, make an enquiry or a complaint if this method is preferable to the telephone or internet.

All complaints will be registered in a database and responded to verbally within 24 hours.

4.6 TRAFFIC INCIDENT MANAGEMENT

Traffic incidents for mine related traffic on the external road network will be managed in accordance with the TGO Incident Response Management System.

The management of traffic related incidents will also include liaison with emergency authorities (police, ambulance, fire brigade etc) to ensure that such authorities are aware of the main site access road and emergency access routes available to the mine site.

4.7 EMERGENCY ACCESS ROADS

Two emergency access roads connect directly from the mine site to the Newell Highway, one on either side of the highway. These will only be used in the event of an on-site emergency.

The emergency access road security gates are locked and signage has been installed indicating the access is for emergency use only. In the event of an emergency site personnel will meet the necessary emergency vehicles at the gates and escort them through the site to the emergency thus ensuring the safety of the emergency vehicle through the site.

4.8 RESTRICTED ACCESS VEHICLES

Restricted Access Vehicles (RAVs) will need to deliver mine site components and large mining equipment to site.

A specific Traffic Control Plan (TCP) is required to be developed by the contractor in accordance with RMS requirements developed for each type of RAV delivery. The TCP will address the following issues:

- The TCP shall be prepared in accordance with the Road and Traffic Authority's Traffic Control at Worksites Manual – Issue I:2000 and by suitably qualified and accredited personnel in accordance with Section 2.4 of the Traffic Control at Worksites Manual.
- Appropriate permits being issued by Roads & Maritime Services and the NSW Police Force.
- Use of escort vehicles as required.
- Provision of traffic controllers as required.
- Restriction of RAV deliveries to daylight hours.

5. TRAFFIC MANAGEMENT PLAN OPERATION

5.1 ROLES AND RESPONSIBILITIES

The roles and responsibilities for the implementation of the Traffic Management Plan are indicated in Table 5.1.

Table 5.1 – Traffic Management Plan Implementation

Role	Responsibility	
TGO Operations Manager	Implementation of the Traffic Management Plan during mining operations	
All personnel	Follow all guidelines and Project rules with respect to traffic management	

5.2 TRAFFIC MANAGEMENT PLAN AUDIT

The Traffic Management Plan will be audited in accordance with the internal audit processes incorporated into the Environmental Management Strategy.

5.3 TRAFFIC MANAGEMENT PLAN REVIEW

Reviews of the Traffic Management Plan will be undertaken annually, following operational or regulatory modification, or as per the TGO Environmental Management Strategy.

6. COMPETENCE TRAINING AND AWARENESS

All personnel working on the TGO will undergo a project induction. This induction includes information on the management of traffic related issues while travelling to and from site, including the following points:

- Consideration and courtesy are essential when driving on public roads;
- Speed limits must be strictly adhered to:
- Formal entries and exits from site must be used;
- Emergency exits are just for emergencies.

After completing the induction workers will sign a statement of attendance and records of this will be kept in the site office.

7. REFERENCES

AUSTROADS. Guide to Traffic Engineering Practice - Local Area Traffic Management

FJF Group Pty Ltd. Tomingley Gold Project Traffic Impact Assessment September 2011

Roads and Traffic Authority of NSW

- Traffic Control at Worksites Manual Issue I:2000
- Signs and Marking Manual
- Road Design Guide

Guide to Traffic Generating Developments

R.W. Corkery &Co. Pty Limited. Tomingley Gold Project Environmental Assessment Major Project Application No. PA 09_0155 May 2011,

APPENDIX A

Consultation with NSC and RMS

Alistair Whittle Geolyse PO Box 1963 154 Peisley St ORANGE NSW 2800

Dear Alistair

PROPOSED TOMINGLEY WEST ROAD UPGRADE

Thank you for the detailed design plans for the above road improvement project, Drawing Sheets 01B_E01 to 01B_E20 Revision B and Pavement Investigation and Design Report from Geotech, Ref: 11/439.

Please be advised that the work shown on the plans is approved by Council subject to the requirements for signs, markings and traffic facilities mentioned below:

Please note that there is not sufficient detail on the plans for signage to be assessed and it is a matter for the applicant to ensure that all signage, road markings and traffic facilities installed as part of the works, meet the relevant Roads and Maritime Services design requirements or, in the absence of a Roads and Maritime Services requirement, the current Australian Standard 1742 for legend, symbols, colours, font, dimensions, location, etc.

If you require further information, please contact Council's Manager Technical Services, Mr Ross Bignell, on 02 6889 9940.

Yours faithfully

Les Simons

Director of Engineering Services

RMS Comments for consideration, taken from RMS email on 18 September 2012 to Henry Kaye	TGO Response to comments
Condition 44 of the Major Project Approval requires a TMP to be submitted, however the content of the TMP (as detailed in condition 44) only needs to address traffic issues at Tomingley West Road, traffic through Tomingley, traffic at the intersection of Newell Highway/Tomingley-Narromine Road (89), 89 /Tomingley West Road and site access road/Tomingley West Road. Condition 44 does not include the diversion of the highway and does not include the proposed emergency access to the highway (although it would seem appropriate that the latter is included in the TMP).	Comment Noted
In Appendix 7 to the Major Project Approval (Statement of Commitments) the proponent is required to submit two TMPs. The first TMP to address the matters detailed in condition 44. The second TMP being a Construction Road Traffic Management Plan (CRTMP), essentially a separate plan which addresses the underpass construction and diversion construction/operation process.	Comment Noted, this TMP addresses the requirements of Condition 44 of Project Approval
Emergency access road from site to Newell Highway. The TMP proposes that this access will only be used during flood events where the Tomingley West Road is unpassable. The TMP also proposes to provide flag men to regulate the movement of mine vehicles onto the highway to ensure safe movements. Access would only be available during daylight hours.	The TMP has been updated to reflect that the Emergency Access Roads will only be used in the event of an emergency and not during flooding. Feedback on the use of flagmen in a 110km/hr zone has been noted and the use of flagmen was removed from the management measures within the TMP.
Advice received from Alkane has been that the access from the highway would	

only be required in the event of an emergency on the mine site. The TMP is contrary to this advice. If the access is required for an on-site emergency only, no upgrading of the existing farm access is necessary. Should access to the highway be required for any event/use outside of this, a rural property access and BAR will be required. Flagmen/Traffic controllers may only operate in a 60km or less environment. The current speed zone in this locale is 110kmph. To provide traffic control on the highway would require the speed zone to be reduced to 60km during emergency events. This is not supported by RMS.	
TMP does not including sealing of Tomingley West Road (only refers to strengthening the road pavement). Major Project Approval requires sealing.	TMP has been updated to include details of the road upgrade including the sealing of the road.
Lighting of Tomingley West Rd/89 intersection - who pays for lighting operation costs?	Narromine Shire Council
Whilst traffic generation details have been provided in the TMP, no details of daily peak travel movements (eg shift changes). At the very least, it would appear that the 89/Tomingley West Rd intersection will require a BAR.	The TMP has been updated in section 3.2 Traffic Volume to provide further information. Please note that the 89/Tomingley West Road is currently a BAR intersection (as detailed within the Traffic Impact Assessment of the TGP EA).
TMP does not adequately address traffic through Tomingley	Comment is noted and further detail is provided in Section 2.1
TMP does not provide detail of how conflict between project related traffic and other road users will be minimised.	Comment is noted and further detail is provided in Section 2.1
TMP does not address movement of oversize vehicles to and from the site.	Section 4.9 has been updated.
Line marking at intersections needs to comply with RMS Delineation Guide.	Comment noted and design drawings amended accordingly
I wish to advise you that the formal acceptance of your Traffic Management Plan is undertaken at the "Construction Phase". The Project Management Plans as noted in the Checklist for Developers	Comment noted.

SPECIALIST CONSULTANT STUDIES

Part 7: Traffic Impact Assessment

ALKANE RESOURCES LTD

Tomingley Gold Project Report No. 616/06

5 - Construction Section Project Management Plans, the developer at that point is required to submit all project management plans to RMS for review. These plans must include: 1) A Construction Program, 2) Quality Plan, 3) Inspection and Test Plans, Construction Traffic Management Plan (CTMP) including a Vehicle Movement Plan, 5) Traffic Control Plans, 6) A Construction Environment Management Plan including an Erosion and Sediment Control Plan

7 - 12

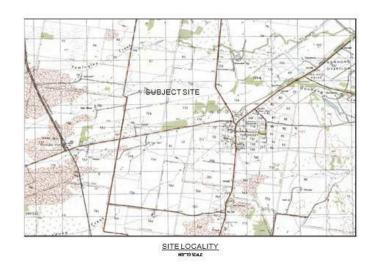
7 - 13

ALKANE RESOURCES LTD

Tomingley Gold Project

Report No. 616/06

APPENDIX B


Design Drawings

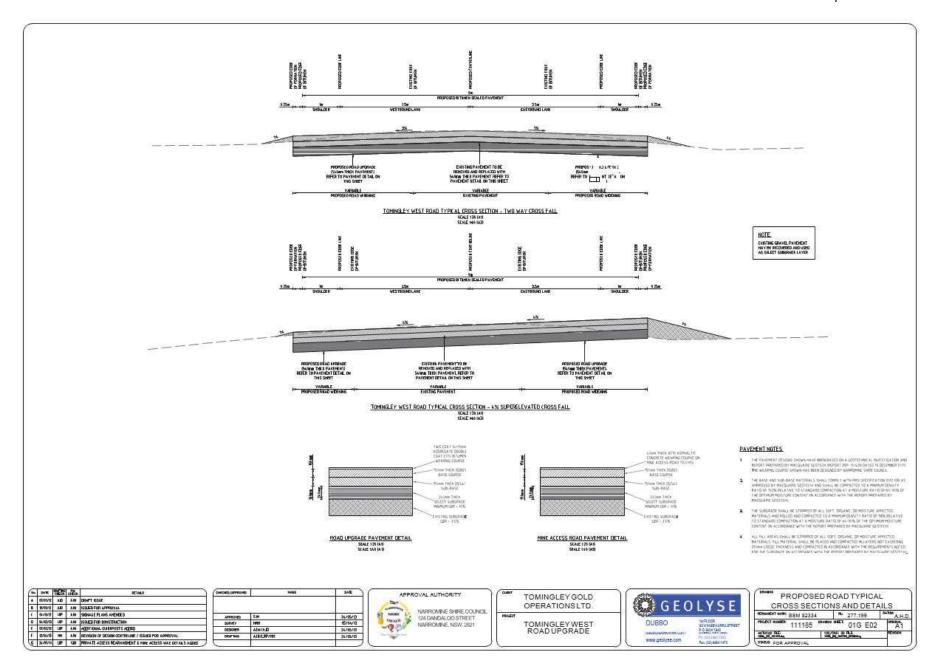
TOMINGLEY GOLD PROJECT TOMINGLEY GOLD OPERATIONS LTD.

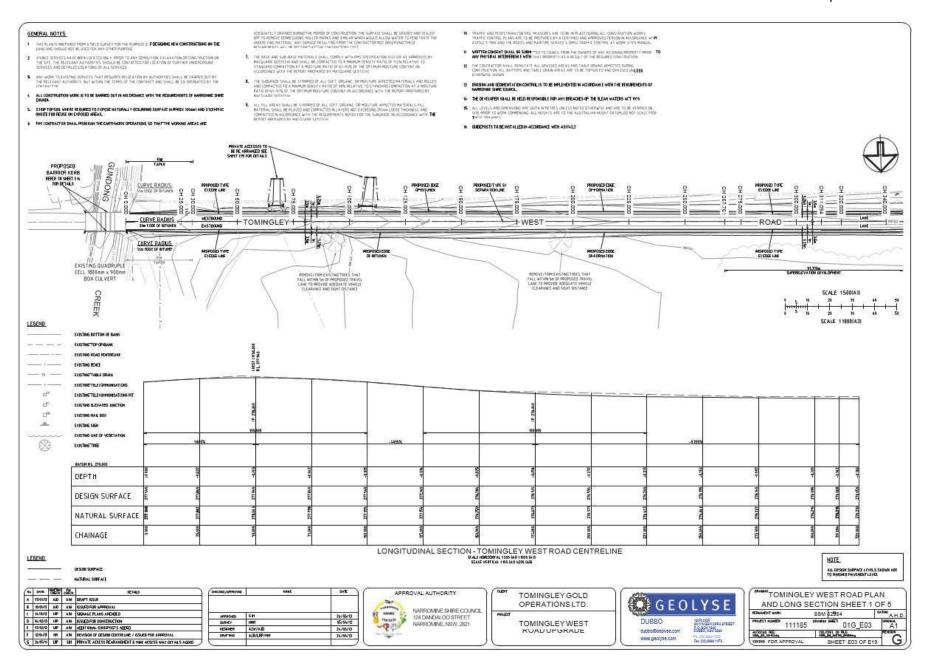
7 - 1

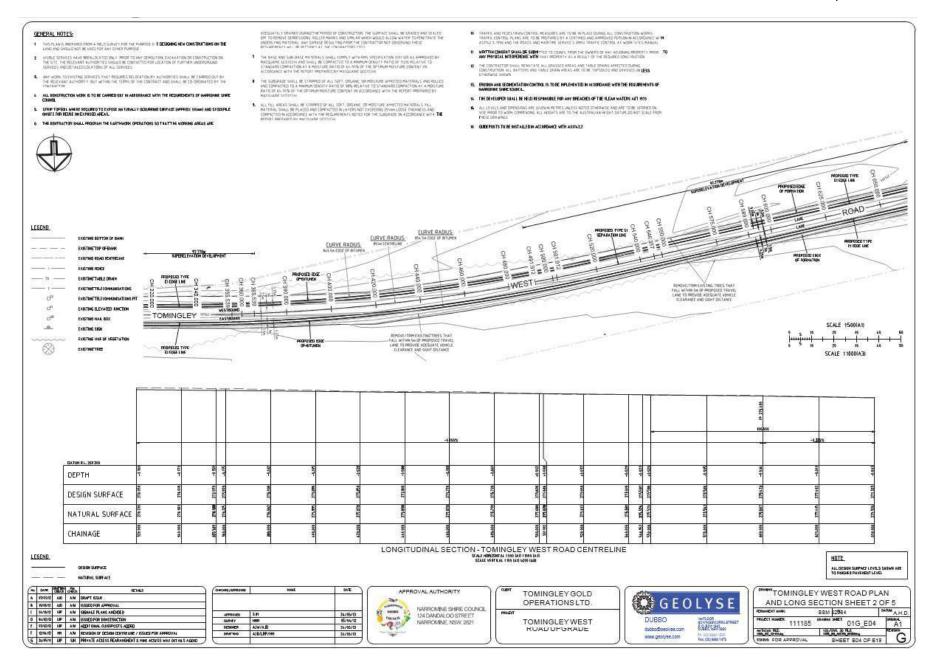
PROPOSED TOMINGLEY WEST ROAD UPGRADE

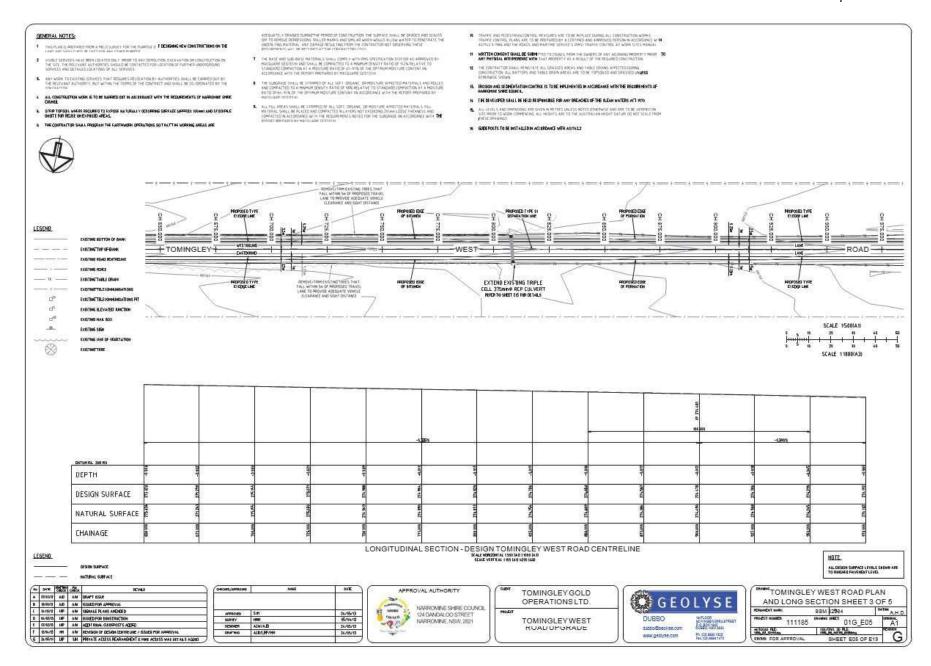
	SCHEDULE OF DRAWINGS				
SHEET	TITLE	REV.	DATE		
01G_E01	TITLE SHEET, DRAWING LIST, AND SITE LOCALITY	G	24/05/2013		
01G_E02	ROAD TYPICAL CROSS SECTION AND DETAILS	G	24/05/2013		
01G_E03	TOMINGLEY WEST ROAD PLAN AND LONG SECTION SHEET 1 OF 5	G	24/05/2013		
01G_E04	TOMINGLEY WEST ROAD PLAN AND LONG SECTION SHEET 2 OF 5	G	24/05/2013		
01G_E05	TOMINGLEY WEST ROAD PLAN AND LONG SECTION SHEET 3 OF 5	G	24/05/2013		
01G_E06	TOMINGLEY WEST ROAD PLAN AND LONG SECTION SHEET 4 OF 5	G	24/05/2013		
01G_E07	TOMINGLEY WEST ROAD PLAN AND LONG SECTION SHEET 5 OF 5	G	24/05/201		
01G_E08	TOMINGLEY WEST ROAD CROSS SECTIONS SHEET 1 OF 5	G	24/05/2013		
01G_E09	TOMINGLEY WEST ROAD CROSS SECTIONS SHEET 2 OF 5	G	24/05/201		
01G E10	TOMINGLEY WEST ROAD CROSS SECTIONS SHEET 3 OF 5	G	24/05/201		
01G_E11	TOMINGLEY WEST ROAD CROSS SECTIONS SHEET 4 OF 5	G	24/05/201		
01G E12	TOMINGLEY WEST ROAD CROSS SECTIONS SHEET 5 OF 5	G	24/05/201		
01G_E13	TOMINGLEY WEST ROAD SETOUT TABLES	G	24/05/201		
01G E14	GUNDONG CREEK CULVERT BARRIER KERB DETAILS	G	24/05/201		
01G E15	TOMINGLEY WEST ROAD PIPE CULVERT EXTENSION DETAILS	G	24/05/201		
01G E16	TOMINGLEY WEST ROAD AND MINE ACCESS ROAD INTERSECTION DETAIL	G	24/05/201		
01G E17	TOMINGLEY WEST ROAD AND MINE ACCESS ROAD SIGNAGE PLAN	G	24/05/201		
01G E18	NARROMINE-TOMINGLEY ROAD AND TOMINGLEY WEST ROAD SIGNAGE PLAN	G	24/05/201		
01G E19	PRIVATEACCESSREARRANGEMENTS	G	24/05/201		

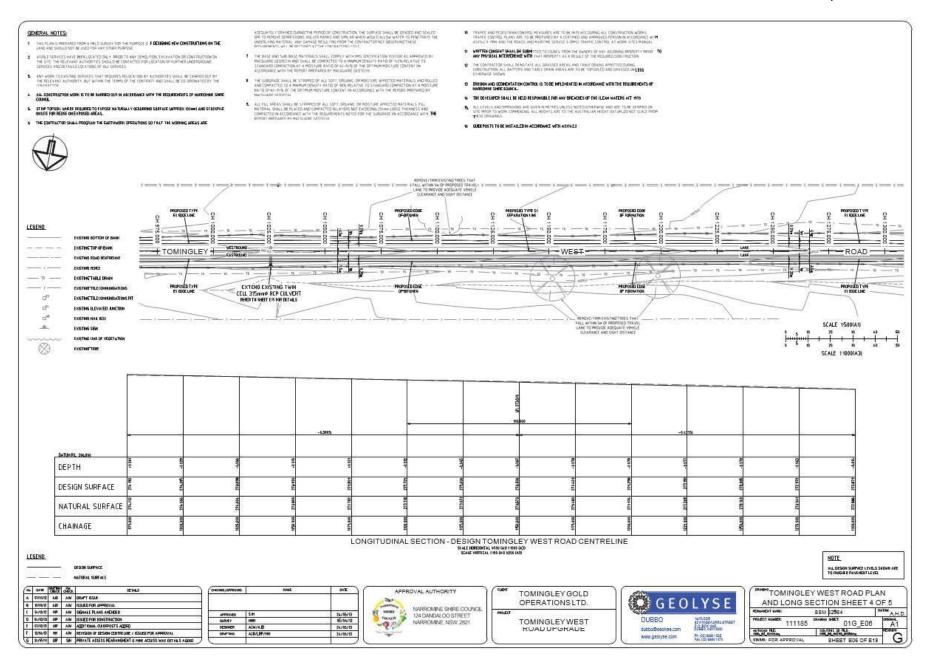
*	ONTE	200	of a	RETHES
٨	(DANA)	.uo	AN	CRAPT ESLE
	8/8/0	AID .	AN	ISSUED FOR APPROVAL
(14/16/12	UP	AN	SIGNASE PLANS AND DED
0	91/10/0	LEP	AN	ISSUED FOR BONSTRUCTION
t	65/10/13	LEP	AM	ACCUT CHAL CURSPOSTS ACCIO
F	12/14/19	181	AM	REVISION OF DESIGN CENTRE LINE / ISSUES FOR APPROVAL
6	34/15/18	UP.	SH	PRIVATE ACTESS REARANGMENT'S MORE ACTESS WAR DETAILS ADDED

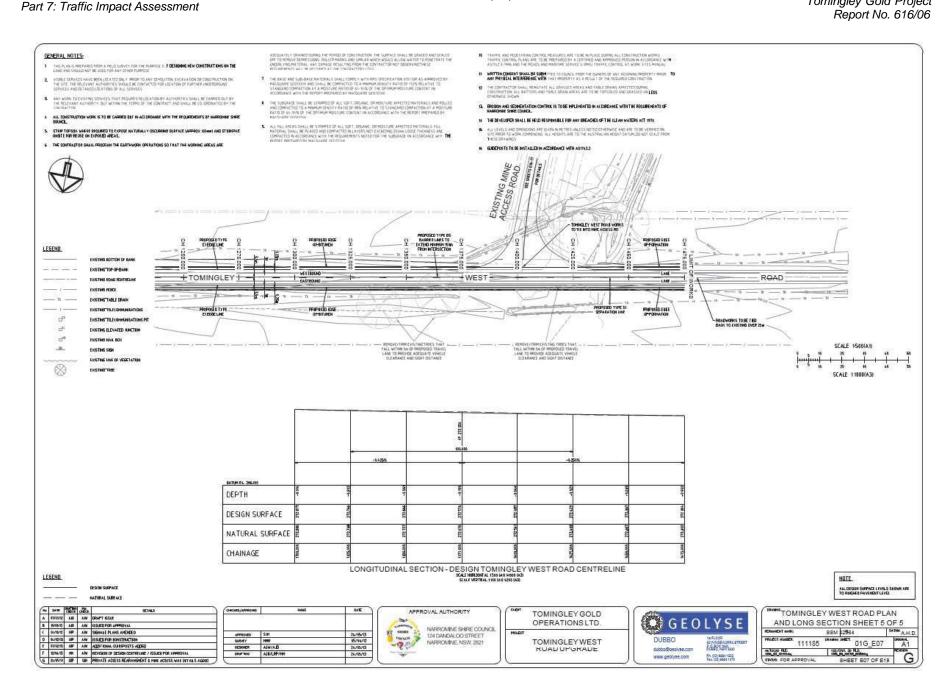

DHORE/WHENE	NAME	0ATE
дукати	s	34/15/0
SURVEY	н	95/14/10
DESIGNER	A /AJD	26/10/13
DENE-MING	AJE/ -P/NH	16/85/13
51.	9	- 10

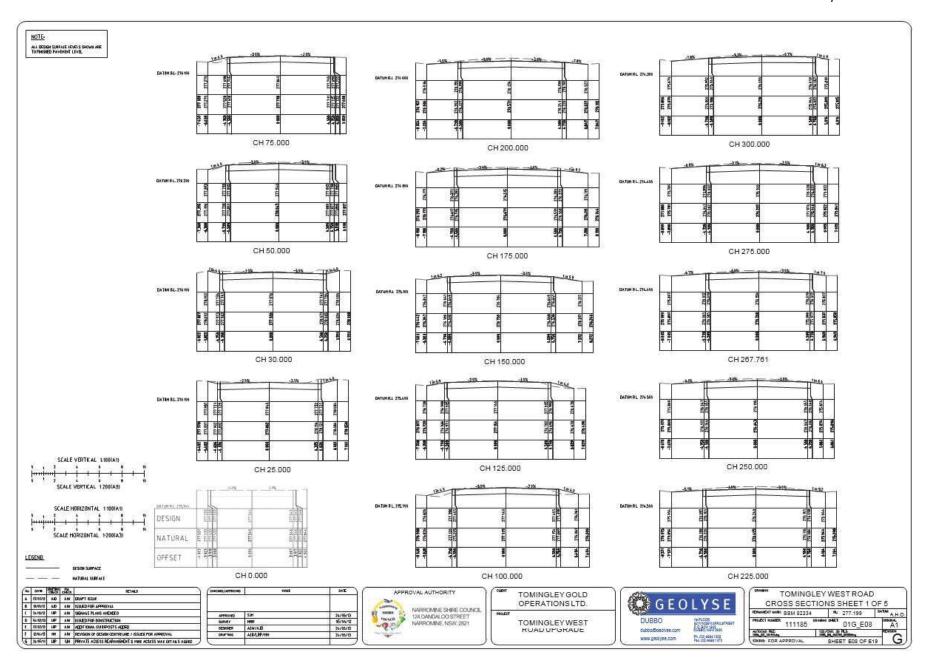


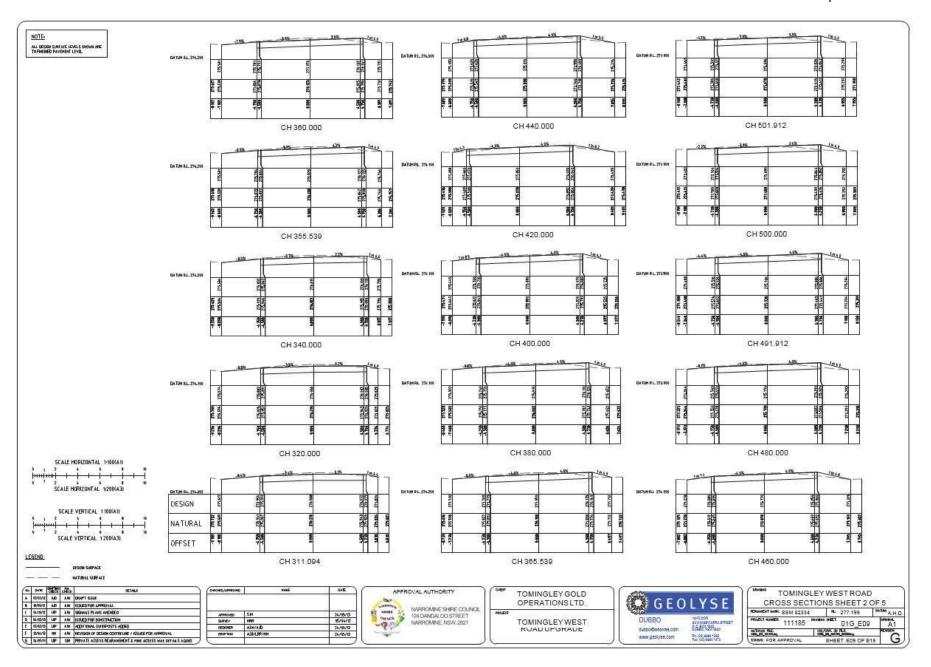

Crapts	TOMINGLEY GOLD
	OPERATIONSLTD.
PROJECT	
	TOMINGLEY WEST
	ROADUPGRADE

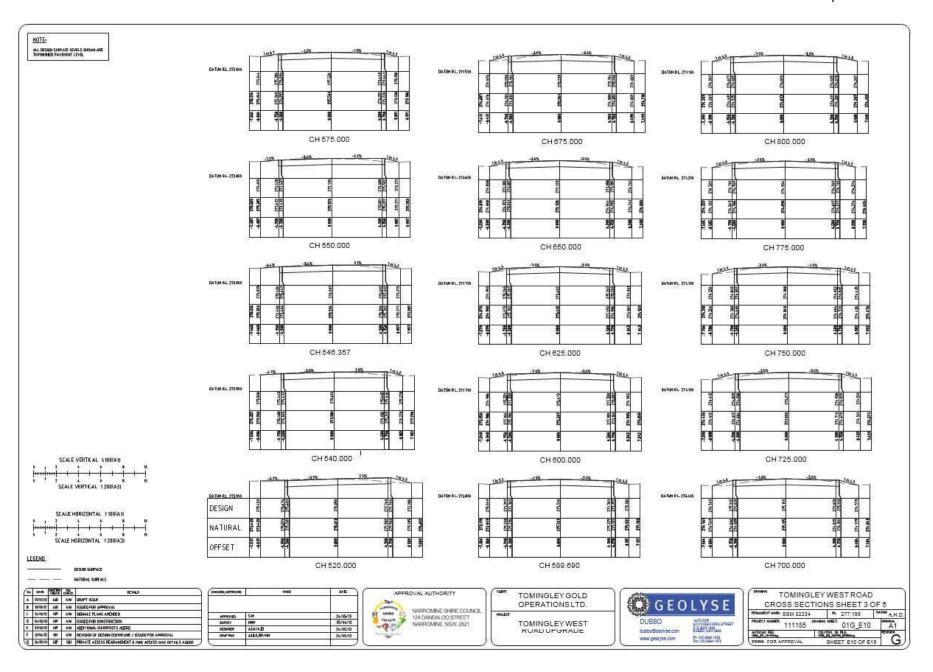

GEO	LYSE
DUBBO	THIFLOOR REVINOEVERRELETRICET
mco.sey(ceg@jcddub	F.O. SOX 1842 DUBBO, NOVI 9890 Sh. (NY) 9884 7510

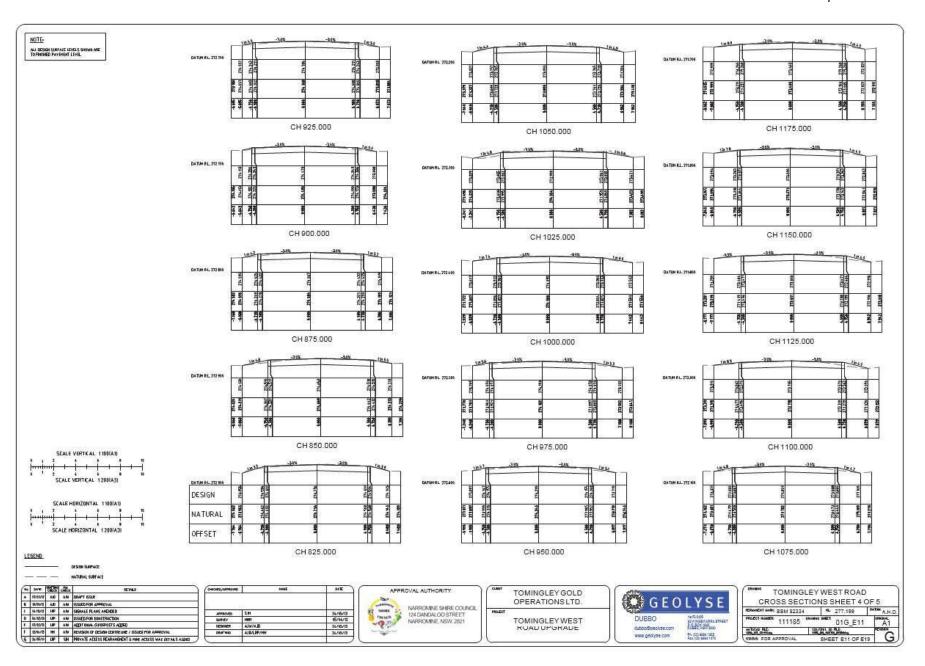

TITLE SHEE				
ANDSI	IELO	MLITT		_
PERMANENT NAME SBM 82334	AL.	277,199	OATIME A	H
111185	otendes sleet	01G_E01	A	1
AUTOCAS -La:	500 / GMT 2	- Salaria	HEND	~
SWINK FOR APPROVAL	SHE	ET EDI OF E1	9	J

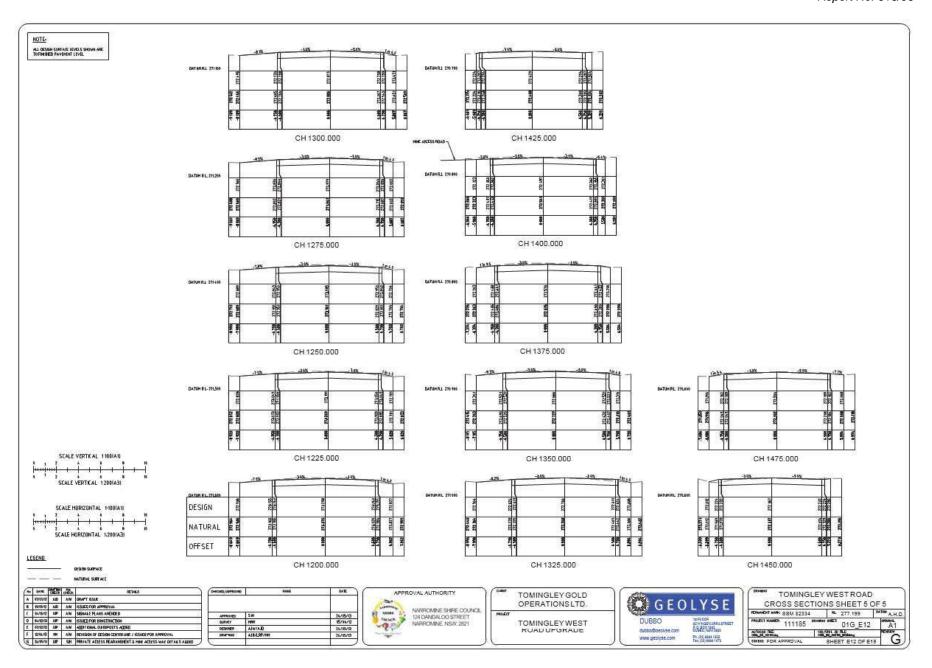


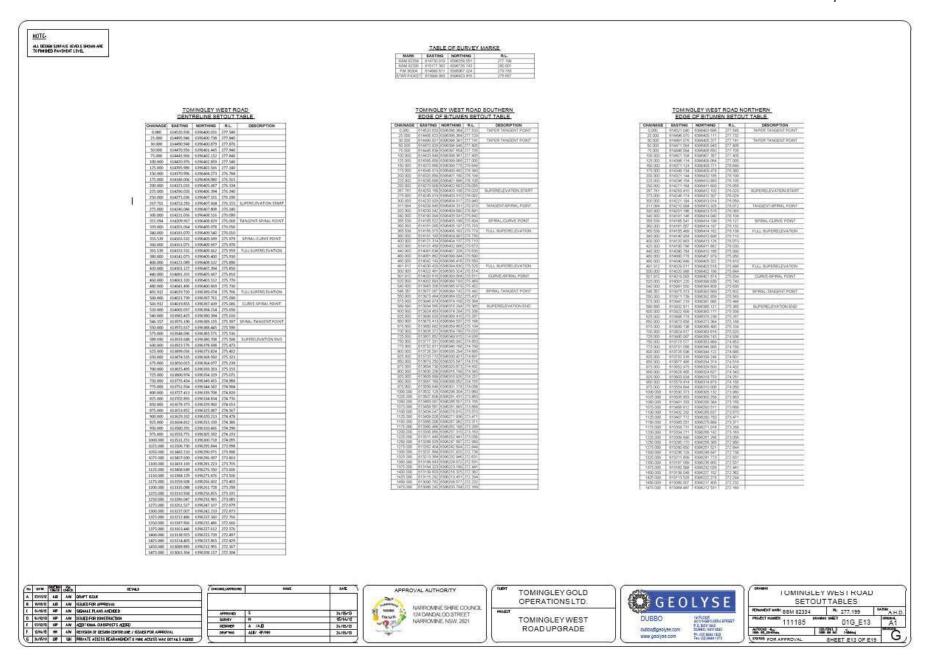


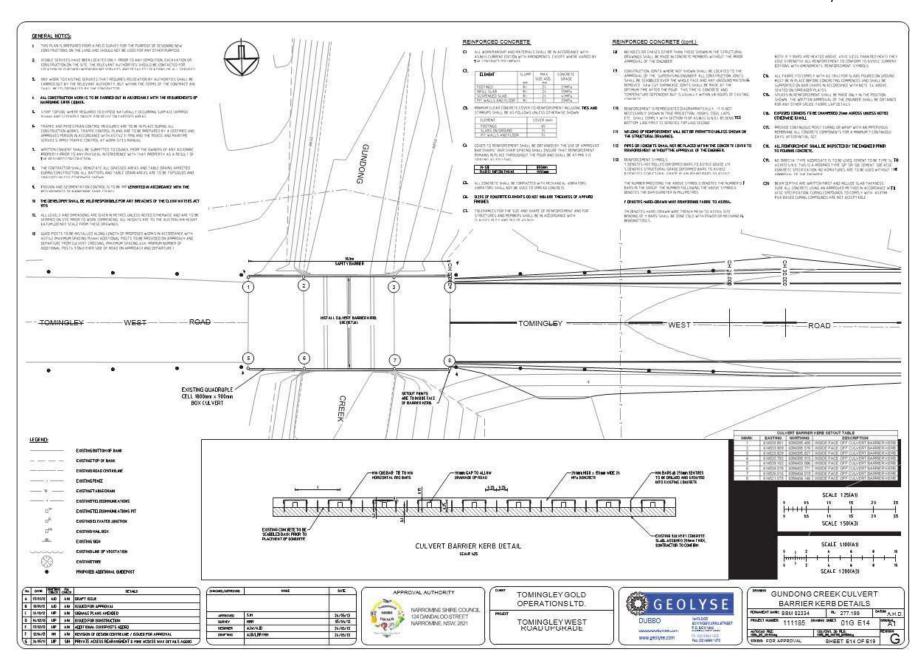


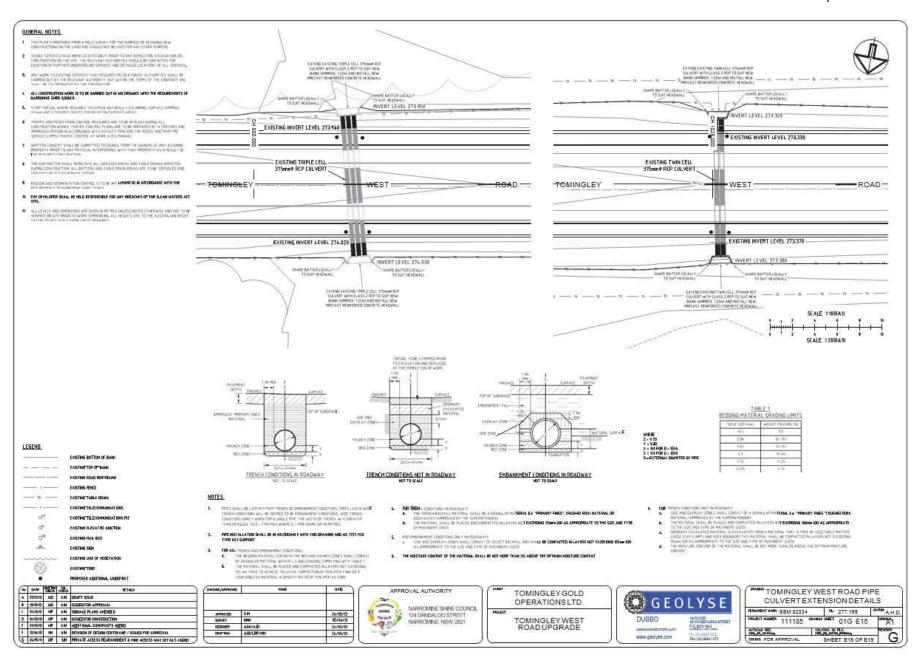


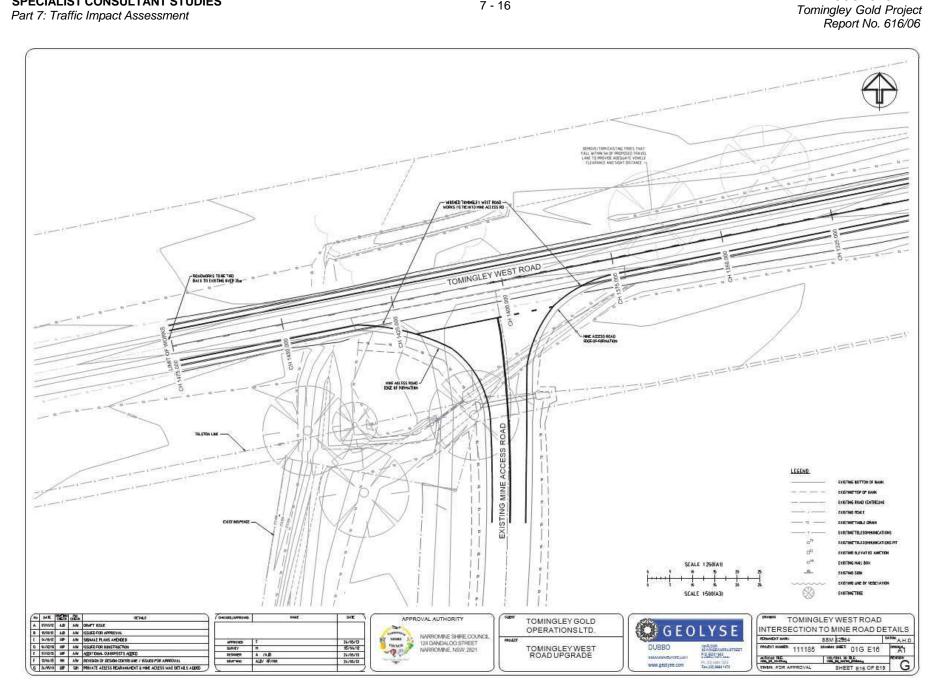

ALKANE RESOURCES LTD Tomingley Gold Project

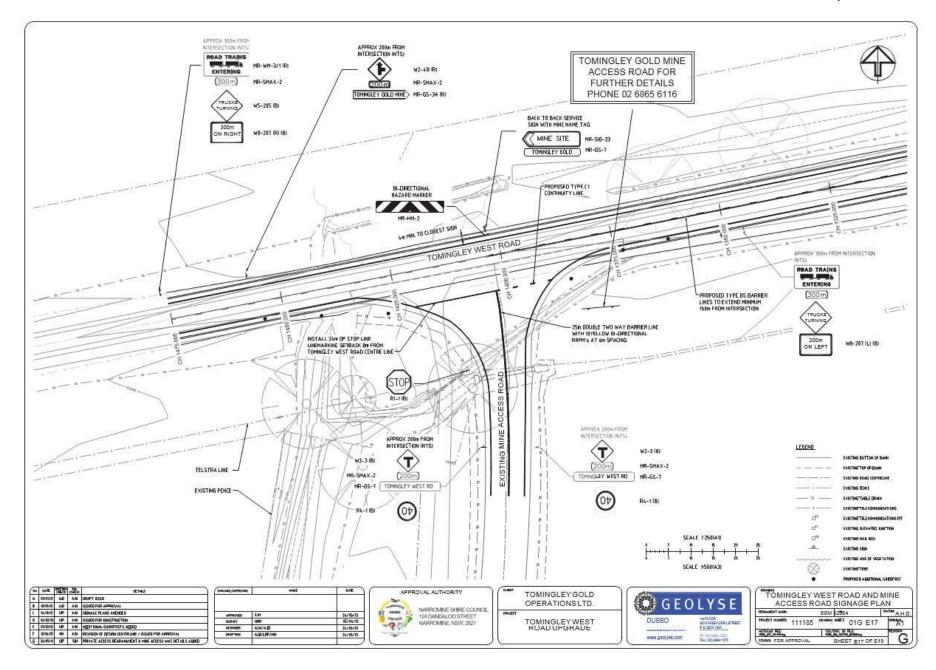


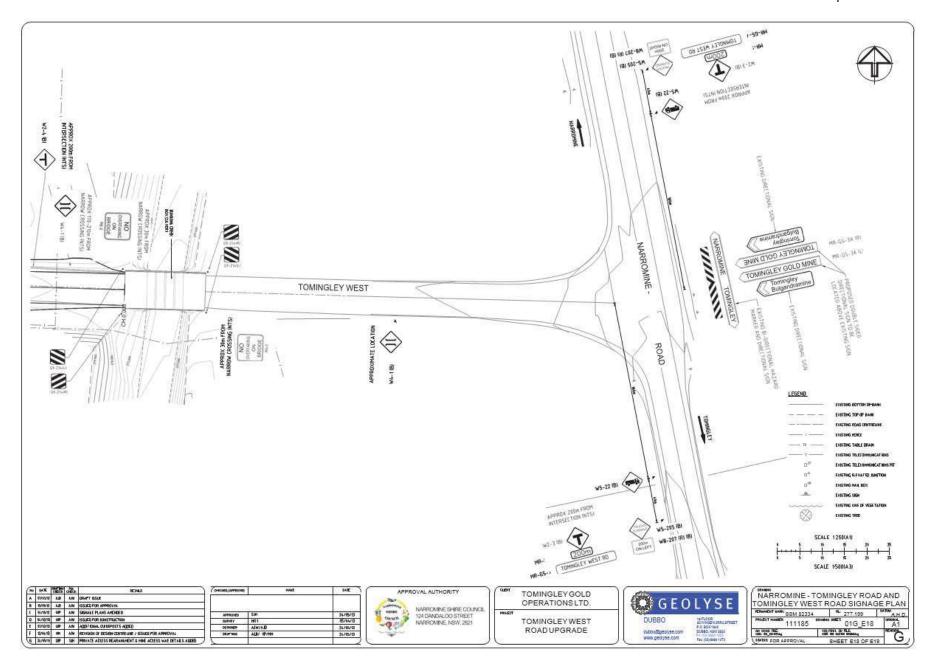


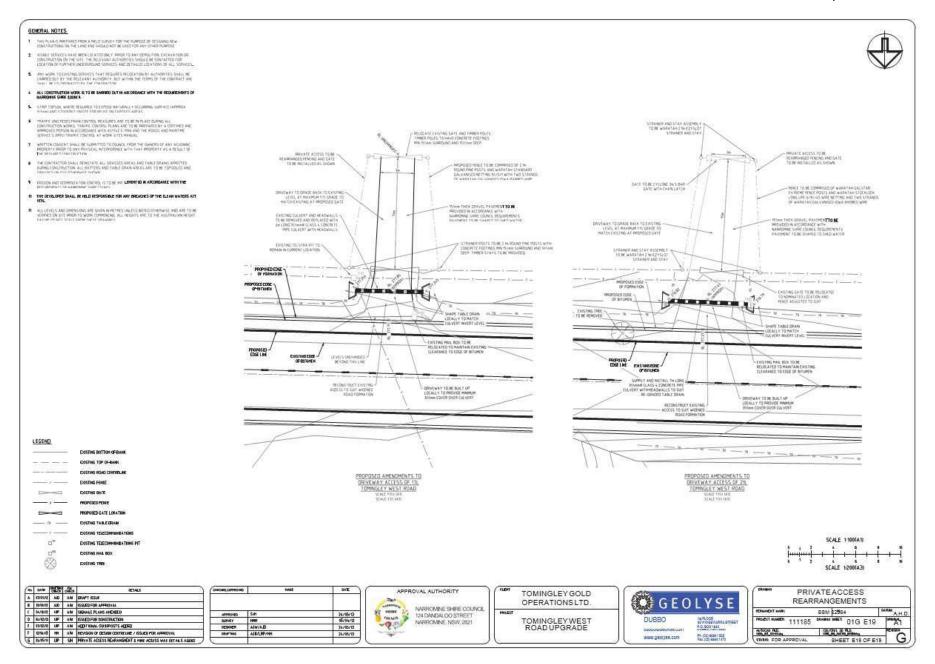












Tomingley Gold Project Report No. 616/06

APPENDIX C

Intersection Sensitivity Analysis (reproduced from EA)

Movement Summary

SH17 and MR89

2017 Base+Sen PM - Parkes

Give-way

Vehicle Movements

Mov ID	Tum	Dem Flow (vch/h)	%HV	Deg of Satn (v/c)	Aver Delay (sec)	Level of Service	95% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
SH17 - So	uth									
1	L	21	28.6	0.014	9.3	LOS A	0	0.00	0.67	49.0
2	T	189	33.2	0.118	0.0	LOS A	0	0.00	0.00	60.0
Approach		211	32.7	0.118	0.9	LOS A		0.00	0.07	58.7
SH17 - No	rth									
8	T	189	33.2	0.118	0.0	LOS A	0	0.00	0.00	60.0
9	R	11	30.0	0.012	11.3	LOS A	1	0.39	0.66	46.9
Approach		200	33.0	0.118	0.6	LOS A	1	0.02	0.03	59.2
MR89 - W	est								100	55555 00
10	L.	11	30.0	0.500	26.7	LOS B	30	0.75	1.01	35.2
12	R	127	29.9	0.494	25.9	LOS B	30	0.75	1.05	35.0
Approach		137	29.9	0.495	26.9	LOS B	30	0.75	1.05	35.1
All Vehicle		548	32.1	0.500	7.3	Not Applicable	30	0.19	0.30	50.4

Symbols which may appear in this table:

Following Degree of Saturation # x = 1.00 for Short Lane with resulting Excess Flow * x = 1.00 due to minimum capacity

Following LOS
- Based on density for continuous movements

Following Queue
- Density for continuous movement

STOPA SOLUTIONS

Site: 2017 Base+Sen PM - Parkes
D:\Modelling\FJF\09-April-Sidra\20100115-revise\SH17 and MR89.aap
Processed Jan 15, 2010 12:24:03AM

Movement Summary

SH17 and MR89

2017 Base+Sen AM - Parkes

Give-way

Vehicle Movements

Mov ID	Turn	Dem Flow (veh/h)	%н۷	Deg of Satn (v/c)	Aver Delay (sec)	Level of Service	95% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
SH17 - So			· service						999C/89	
1	L	127	29.9	0.083	9.3	LOS A	0	0.00	0.67	49.0
2	T	189	33.2	0.118	0.0	LOS A	0	0.00	0.00	60.0
Approach		317	31.9	0.118	3.7	LOS A		0.00	0.27	55.0
SH17 - No	orth	e, me venter er er				*************	- Indonesia	+ Laur Traces	no accessor i appoint i des	M. Mary 1997
8	т	189	33.2	0.118	0.0	LOS A	0	0.00	0.00	60.0
9	R.	11	30.0	0.014	12.4	LOS A	1	0.47	0.70	45.8
Approach		200	33.0	0.118	0.6	LOS A	1	0.02	0.03	59.1
MR89 - W	est				CO 1250 M			eses on		R. J. Lee, Long School-
10	L	11	30.0	0.105	19.4	LOS B	4	0.62	0.76	39.9
12	R	21	28.6	0.106	19.6	LOS B	4	0.62	0.00	39.8
Approach		31	29.0	0.106	19.5	LOS B	4	0.62	0.84	39.8
All Vehicle	es e	548	32.1	0.118	3.5	Not Applicable	4	0.04	0.22	55.2

Symbols which may appear in this table:

Following Degree of Saturation $\beta \times 1.00$ for Short Lane with resulting Excess Flow $\star \times 1.00$ due to minimum capacity

Following LOS
- Based on density for continuous movements

Following Queue # - Density for continuous movement

- يُم SIDRA SOLUTIONS

Site: 2017 Base+Sen AM - Parkes D:\Modelling\FJF\09-April-Sidra\20100115-revise\SH17 and MR89.aap Processed Jan 15, 2010 12:24:02AM

Movement Summary

SH17 and MR89

2017 Base+Sen PM - Dubbo

Vehicle Movements

Mov ID	Turn	Dem Flow (veh/h)	%HV	Deg of Satn (v/c)	Aver Delay (sec)	Level of Service	95% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
SH17 - So	uth									
1	L	21	28.6	0.014	9.3	LOS A	0	0.00	0.67	49.0
2	T	189	33.2	0.118	0.0	LOS A	0	0.00	0.00	60.0
Approach		211	32.7	0.118	0.9	LOS A		0.00	0.07	58.7
SH17 - No	rth									
8	T	189	33.2	0.118	0.0	LOS A	0	0.00	0.00	60.0
9	R	11	30.0	0.012	11.3	LOS A	1	0.39	0.66	46.9
Approach		200	33.0	0.118	0.6	LOS A	1	0.02	0.03	59.2
								11.000		0.000
MR89 - W	est									
10	L	117	29.9	0.248	13.3	LOS A	11	0.49	0.74	44.9
12	R	21	28.6	0.247	13.5	LOS A	11	0.49	0.84	44.7
Approach		138	29.7	0.248	13.4	LOS A	11	0.49	0.76	44.8
All Vehicle	s	549	32.1	0.248	3.9	Not Applicable	11	0.13	0.23	54.6

Symbols which may appear in this table:

Following Degree of Saturation # x = 1.00 for Short Lane with resulting Excess Flow * x = 1.00 due to minimum capacity

Following LOS 9 - Based on density for continuous movements

Following Queue # - Density for continuous movement

SIDRA COLUTIONS

Site: 2017 Base+Sen PM - Dubbo D:\Modelling\FJF\09-April-Sidra\20100115-revise\SH17 and MR89.aap Processed Jan 15, 2010 12:24:02AM

Movement Summary

SH17 and MR89

2017 Base+Sen AM - Dubbo

Vehicle Movements

Mov ID	Turn	Dem Flow (veh/h)	% н ∨	Deg of Satn (v/c)	Aver Delay (sec)	Level of Service	95% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
9 666 FC	90,880,60		eeseen a	89 - 888 - 1		9040 - MSS - 6940 - 1	r an State			caninga
SH17 - So	uth									
1	L	21	28.6	0.014	9.3	LOS A	0	0.00	0.67	49.0
2	T	189	33.2	0.118	0.0	LOS A	0	0.00	0.00	60.0
Approach		211	32.7	0.118	0.9	LOS A		0.00	0.07	58.7
SH17 - No	orth		The state and bound of			A PARKET, I				2011
8	T	189	33.2	0.118	0.0	LOS A	0	0.00	0.00	50.0
9	R	117	29.9	0.141	11.6	LOS A	7	0.42	0.72	46.6
Approach		307	31.9	0.141	4.4	LOS A	7	0.16	0.27	54.1
MR89 - W	eet	3227 227	\$ 100 Miles		100000001 1	TA PRE DESCRIPTION	##C001 61400	964.9 (996)	ermen K M	(1) (0.00)
10	ear.	11	30,0	0.119	21.2	LOS B	5	0.63	0.72	20.6
12	R	21	28.6	0.119	21.4	LOS B	5	0.63	0.73	38.6
Approach	10.00	31	29.0	0.119	21.3	LOS B	5	0.63	0.83	38.5 38.5
Will AND SE	part with the	r o stållige			ar y 17 Villa		walle.		12000	
All Vehicle	os	549	32.1	0.141	4.0	Not Applicable	7	0.13	0.23	54.5

Symbols which may appear in this table:

Following Degree of Saturation $\# \times = 1.00$ for Short Lane with resulting Excess Flow $* \times = 1.00$ due to minimum capacity

Following LOS # - Based on density for continuous movements

Following Queue # - Density for continuous movement

SIGRA SULUTIONS

Site: 2017 Base: Sen AM - Dubbo D:\Modelling\FJF\09-April-Sidra\20100115-revise\SH17 and MR89.aap Processed Jan 15, 2010 12:24:02AM

Movement Summary

SH17 and MR89

2017 Base+Dev PM

Give-way

Vehicle Movements

Mov ID	Turn	Dem Flow (veh/h)	%HV	Deg of Satn (v/c)	Aver Delay (sec)	Level of Service	95% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
	11 1 100		001 hot to a 100 to 1			(* *) () () () () () () () () (. 10000 (140			# (* (*) (# (*) (*) (*)
SH17 - So	uth									
1	L	21	28.5	0.014	9.3	LOS A	0	0.00	0.67	49.0
2	T	189	33.2	0.118	0.0	LOS A	0	0.00	0.00	60.0
Approach		211	32.7	0.118	0.9	LOS A		0.00	0.07	58.7
SH17 - No	orth									
8	T	189	33.2	0.118	0.0	LOS A	0	0.00	0.00	60.0
9	R	11	30.0	0.012	11.3	LOS A	1	0.39	0.66	46.9
Approach		200	33.0	0.118	0.6	LOS A	1	0.02	0.03	59.2
									115.1	C 25 (C)
MR89 - W	est	11000								
10	L	49	30.0	0.286	18.0	LOS B	14	0.59	0.80	40.9
12	R	56	30.4	0.286	18.1	LOS B	14	0.59	0.90	40.8
Approach		106	30.2	0.286	18.1	LOS B	14	0.59	0.85	40.9
All Vehicle			22.2	0.206	4.0	Not				
All venici	25	517	32.3	0.286	4.3	Applicable	14	0.13	0.21	54.1

Symbols which may appear in this table:

Following Degree of Saturation # x = 1.00 for Short Lane with resulting Excess Flow * x = 1.00 due to minimum capacity

Following LOS # - Based on density for continuous movements

Following Queue # - Density for continuous movement

SIDRA SOLUTIONS

Site: 2017 Base+Dev PM D:\Modelling\FJF\09-April-Sidra\20100115-revise\SH17 and MR89.aap Processed Jan 15, 2010 12:24:01AM

Movement Summary

SH17 and MR89

2017 Base+Dev AM

Give-way

Vehicle Movements

Mov ID	Turn	Dem Flow (veh/h)	%HV	Deg of Satn (v/c)	Aver Delay (sec)	Level of Service	95% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
SH17 - So	uth									
1	L	56	30.4	0.037	9.3	LOS A	0	0.00	0.67	49.0
2	T	189	33.2	0.118	0.0	LOS A	0	0.00	0.00	60.0
Approach		246	32.5	0.118	2.1	LOS A		0.00	0.15	57.1
SH17 - No	rth	tata na						CONTRACTOR OF THE PARTY OF THE		0100000 0
8	T	189	33.2	0.118	0.0	LOS A	0	0.00	0.00	60.0
9	R	49	30.0	0.064	11.8	LOS A	3	0.43	0.71	46.4
Approach		240	32.5	0.118	2.5	LOS A	3	0.09	0.15	56.6
See 37 300	9690090 P	elek karangan	6 386 66 3		56 - 19 0 - 60 (0	CAR TANA IIIO	H-1607-000-5-4-11		- 19 - 19 - 19	
MR89 - W	est									
10	L	11	30.0	0.105	19.4	LOS B	4	0.60	0.73	39.9
12	R	21	28.6	0.105	19.6	LOS B	4	0.60	0.88	39.8
Approach		31	29.0	0.106	19.5	LOS B	4	0.60	0.83	39.8
All Vehicle	15	517	32.3	0.118	3.3	Not Applicable	4	0.08	0.19	55.4

Symbols which may appear in this table:

Following Degree of Saturation # x = 1.00 for Short Lane with resulting Excess Flow * x = 1.00 due to minimum capacity

Following LOS
- Based on density for continuous movements

Following Queue # - Density for continuous movement

SIDRA SOLUTIONS

Site: 2017 Base+Dev AM D:\Modelling\FJF\09-April-Sidra\20100115-revise\SH17 and MR89.aap Processed Jan 15, 2010 12:24:01AM

Movement Summary

SH17 and MR89

2017 Base

Give-way

Vehicle Movements

Mov ID	Turn	Dem Flow (veh/h)	%н۷	Deg of Satn (v/c)	Aver Delay (sec)	Level of Service	95% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
SH17 - So	uth									
1	L	21	28.6	0.014	9.3	LOS A	0	0.00	0.67	49.0
2	T	189	33.2	0.118	0.0	LOS A	0	0.00	0.00	60.0
Approach		211	32.7	0.118	0.9	LOS A		0.00	0.07	58.7
SH17 - No	rth									
8	T	189	33.2	0.118	0.0	LOS A	0	0.00	0.00	60.0
9	R	11	30.0	0.012	11.3	LOS A	1	0.39	0.66	46.9
Approach		200	33.0	0.118	0.6	LOS A	1	0.02	0.03	59.2
MR89 - W	est									
10	L	11	30.0	0.093	17.5	LOS B	4	0.57	0.71	41.4
12	R	21	28.6	0.092	17.6	LOS B	4	0.57	0.86	41.2
Approach		31	29.0	0.092	17.6	LOS B	4	0.57	0.81	41.3
All Vehicle		442	32.6	0.118	1.9	Not Applicable	4	0.05	0.10	57.2

Symbols which may appear in this table:

Following Degree of Saturation # x = 1.00 for Short Lane with resulting Excess Flow * x = 1.00 due to minimum capacity

Following LOS # - Based on density for continuous movements

Following Queue # - Density for continuous movement

SIDRA SOCUTIONS

Site: 2017 Base D:\Modelling\FJF\09-April-Sidra\20100115-revise\SH17 and MR89.aap Processed Jan 15, 2010 12:24:00AM

Tomingley Gold Project Report No. 616/06

Movement Summary

SH17 and MR89

2009 Base+Sen PM - Parkes

Give-way

Vehicle Movements

Mov ID	Turn	Dem Flow (veh/h)	%H V	Deg of Satn (v/c)	Aver Delay (sec)	Level of Service	95% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
SH17 - So	uth		1,000	open passes	ADDRESS NO.	12.000000000000000000000000000000000000	(1000010000)		1966 - 1965 1966	
1	E	16	31.2	0.011	9.3	LOS A	0	0.00	0,67	49.0
2	Ť	158	32.9	0.098	0.0	LOS A	o	0.00	0.00	60.0
Approach		174	32.8	0.098	0.9	LOS A		0.00	0.06	58.8
SH17 - No	orth	93 M (20 (0) 1 (1) 1 2 2 2			ermeese y	44 (9 (9a)) (salasa				e and the same of
8	T	158	32.9	0.098	0.0	LOS A	0	0.00	0.00	60.0
9	R	11	30.0	0.011	11.0	LOS A	0	0.35	0.65	47.2
Approach		168	32.7	0.098	0.7	LOS A	0	0.02	0.04	59.1
MR89 - W	est	Carrier 9 vince	e concessor spen					5		208 309
10	L	11	30.0	0.400	21.0	LOS B	23	0.66	0.87	38.7
12	R.	121	29.8	0.394	21.2	LOS B	23	0.66	0.97	38.6
Approach	ACCUARTS	131	29.8	0.394	21.2	LOS B	23	0.66	0.96	38.6
All Vohick		473	31.9	0.400	6.4	Not Applicable	23	0.19	0.30	51.5

Symbols which may appear in this table:

Following Degree of Saturation # x = 1.00 for Short Lane with resulting Excess Flow * x = 1.00 due to minimum capacity

- Based on density for continuous movements

Following Queue # - Density for continuous movement

Site: 2009 Base+Sen PM - Parkes D:\Modelling\FJF\09-April-Sidra\20100115-revise\SH17 and MR89.aap Processed Jan 15, 2010 12:24:00AM

Movement Summary

SH17 and MR89

2009 Base+Sen AM - Parkes

Give-way

Vehicle Movements

Mov ID	Turn	Dom Flow (veh/h)	%HV	Deg of Satn (v/c)	Aver Delay (sec)	Level of Service	95% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
SH17 - So	outh	- W. M. M. M.		300 10 100 1000						
1	L	121	29.8	0.079	9.3	LOS A	0	0.00	0.67	49.0
2	T	158	32.9	0.098	0.0	LOS A	0	0.00	0.00	60.0
Approach		279	31.5	0.098	4.0	LOS A		0.00	0.29	54.7
SH17 - No	orth									
8	T	158	32.9	0.098	0.0	LOS A	0	0.00	0.00	60.0
9	R	11	30.0	0.013	12.0	LOS A	1	0.44	0.68	46.2
Approach		168	32.7	0.098	0.7	LOS A	1	0.03	0.04	59.0
MR89 - W	est									
10	L	11	30.0	0.074	16.8	LOS B	3	0.56	0.71	41.9
12	R	16	31.2	0.074	17.0	LOS B	3	0.56	0.86	41.7
Approach		26	30.8	0.074	16.9	LOS B	3	0.56	0.80	41.8
All Vehicle	es	473	31.9	0.098	3.6	Not Applicable	3	0.04	0.23	55.2

Symbols which may appear in this table:

Following Degree of Saturation # x = 1.00 for Short Lane with resulting Excess Flow # x = 1.00 due to minimum capacity

Following LOS # - Based on density for continuous movements

Following Queue # - Density for continuous movement

SIDRA SOLUTIONS

Site: 2009 Base+Sen AM - Parkes D:\Modelling\FJF\09-April-Sidra\20100115-revise\SH17 and MR89.aap Processed Jan 15, 2010 12:24:00AM

Tomingley Gold Project Report No. 616/06

Movement Summary

SH17 and MR89

2009 Base+Sen PM - Dubbo

Give-way

Vehicle Movements

Mav ID	Turn	Dem Flow (veh/h)	%НV	Deg of Satn (v/c)	Aver Delay (sec)	Level of Service	95% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
SH17 - So	auth.	- 0000000000000000000000000000000000000		50-50-5		ACTIVITY FOR	16.55 (4.96		EC 191499 (814)	i inti birani
1	i i	16	31.2	0.011	9.3	LOS A	0	0.00	0.67	49.0
2	T	158	32.9	0.098	0.0	LOS A	o	0.00	0.00	60.0
Approach	· (174	32.8	0.098	0.9	LOS A		0.00	0.06	58.8
SH17 - No	orth	aran Pi inc mina inchin			Mary Salah Ma	- We - In a trial langual SE for		VA SAMPILATO	56500	aler (g)
8	T	158	32.9	0.098	0.0	LOS A	10	0.00	0.00	60.0
9	R	11	30.0	0.011	11.0	LOS A	0	0.35	0.65	47.2
Approach		168	32.7	0.098	0.7	LOS A	0	0.02	0.04	59.1
MR89 - W	est	provided to the pain		100 EXTERNAL 1		Como, services		al assalta (140-	14.48564444.50	- hadd glad
10	L	116	30.2	0.211	12.2	LOS A	10	0.43	0.70	45.9
12	R	16	31.2	0.211	12.4	LOS A	10	0.43	0.62	45.8
Approach		132	30.3	0.211	12.2	LOS A	10	0.43	0.72	45.9
All Vehicle	es	474	32.1	0.211	4.0	Not Applicable	10	0.13	0.24	54.6

Symbols which may appear in this table:

Following Degree of Saturation $\theta \propto 1.00$ for Short Lane with resulting Excess Flow $\star \propto 1.00$ due to minimum capacity

Following LOS

- Based on density for continuous movements

Following Queue # - Density for continuous movement

SIDEA SOLUTIONS

Site: 2009 Base+Sen PM - Dubbo D:\Modelling\F7F\09-April-Sidra\20100115-revise\SH17 and MR89.aap Processed Jan 15, 2010 12:23:59AM

OF SECTION ASSESSMENT									
	ADDONAGE		**************************************	A CONTRACTOR OF					***C0C0C0C0C
array - marray		-10.00 - 100	-50° -30° -8 -100	-07 -03	2220 10		20.2000	20.00	47.40 144
11112	-2.2536	- P. O. C.	ACC 101 A 28	-26:34	2.000	~	201-2010	200 200 000	-05'06': 56
a ready because a	-0.4	-07-05 / D.S.	AND LONGE OF	2.00	A 47.00 M	-	20.75.0	27.400	22.14

Tomingley Gold Project Report No. 616/06

 	-36.56 - 56.	-00 OC 4 III	49.10	2.2222 30		201 2222	27.72.0	20.00 10
 -2.2636	200	-000 min at 200	-26:36	2.2000 00	~	201.2818	201 20100	255.00 - 546
 -4.4	27.76 - 94	AND SPECIAL SEC.	22.00	A 400 M	18	20.00	27.46.0	22.00

SIDRA INTERSECTION

Movement Summary

SH17 and MR89

2009 Base+Sen AM - Dubbo

Vehicle Movements

Mov ID	Turn	Dem Flow (veh/h)	%HV	Satn (v/c)	Aver Delay (sec)	Level of Service	95% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
SH17 - So	outh									
1	L	16	31.2	0.011	9.3	LOS A	0	0.00	0.67	49.0
2	T	158	32.9	0.098	0.0	LOS A	0	0.00	0.00	60.0
Approach		174	32.8	0.098	0.9	LOS A		0.00	0.06	58.8
SH17 - No	orth									
8	T	158	32.9	0.098	0.0	LOS A	0	0.00	0.00	60.0
9	R	116	30.2	0.132	11.2	LOS A	6	0.38	0.70	47.0
Approach		274	31.8	0.132	4.7	LOS A	6	0.16	0.30	53.7
MR89 - W	est				9.0					
10	L	11	30.0	0.083	18.2	LOS B	3	0.55	0.68	40.8
12	R	16	31.2	0.082	18.3	LOS B	3	0.55	0.86	40.7
Approach		26	30.8	0.082	18.3	LOS B	3	0.55	0.79	40.7
All Vehicle	es	474	32.1	0.132	4.1	Not Applicable	6	0.12	0.24	54.5

Symbols which may appear in this table:

Following Degree of Saturation # x = 1.00 for Short Lane with resulting Excess Flow * x = 1.00 due to minimum capacity

Following LOS # - Based on density for continuous movements

Following Queue
- Density for continuous movement

SIDRA SOLUTIONS

Site: 2009 Base+Sen AM - Dubbo D:\Modelling\FJF\09-April-Sidra\20100115-revise\SH17 and MR89.aap Processed Jan 15, 2010 12:23:59AM

		-9-39 - 36	-01-25 A M	49.40	2220 30		20.2224	27.22.0	2022 12	
many of the second of	-2.2636	-2.42 65	-300 min A 24	-26.36	2220 20	~	32.3818	201-24-14	-79°-348 - 168	
2000	-0.8	25.00 / 94.	Jan. Sarate id.	200	2.000 00	- 18	20.000	27.26.0	A 2 1 18	
	CONTRACTOR OF CHICA-	The second second second								
BELLEVIAN SECTION	Charles and the control		0.0000							
	- AD00700		2404b-05	- Contraction (A)	The same of the sa				-websessess	
management	2.012	20.00	- 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12	22.43	2 4 2 2 2 2	-	20.75.4	201 2010	AP-107 E.E.	
The state of the s	2.00	200	-00 JUNE 20	1.00	2.2000 30	46	297 297 39	20, 30.10	-37-36 W	
Contract Con		20.00 200	-0-200	20.00	2.2200 10	2.2	27. 25.25	27 - 17 - 17	-0.00	
THE RESERVE OF THE PERSON OF T										

Tomingley Gold Project Report No. 616/06

SIDRA - "-INTERSECTION

Movement Summary

SH17 and MR89

2009 Base+Dev PM

Give-way

Vehicle Movements

Mov ID	Turn	Dem Flow (veh/h)	%HV	Deg of Satn (v/c)	Aver Delay (sec)	Level of Service	95% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
SH17 - So	uth	0.0000000000000000000000000000000000000			776000000	1 100 - 1000	and a later (Sec.	At the side	44 3938.9K :	Aptrocas into
1	L	16	31.2	0.011	9.3	LOS A	0	0.00	0.67	49.0
2	T	158	32.9	0.098	0.0	LOS A	0	0.00	0.00	60.0
Approach		174	32.8	0.098	0.9	LOS A		0.00	0.06	58.8
SH17 - No	rth		* 9000 ju	motor : Noticestin	older, implije	Print (2000/00) An	E 14. 19334E1	100000 1000		3 (202) (203)
8	T	158	32.9	0.098	0.0	LOS A	0	0.00	0.00	60.0
9	R	11	30.0	0.011	11.0	LOS A	0	0.35	0.65	47.2
Approach		168	32.7	0.098	0.7	LOS A	0	0.02	0.04	59.1
MR89 - W		10 10 10 10 10 10	2 220020		erana japo j	Magazinesi, j		16 35 page	20 20 3	a. Wala
10	L	49	30.0	0.216	14.9	LOS B	10	0.51	0.71	43.5
12	R	47	29.8	0.217	15.1	LOS B	10	0.51	0.85	43.3
Approach		97	29.9	0.216	15.0	LOS B	10	0.51	0.78	43.4
275 2753	HOME ACTOR	EEE 0900 3	FC[1](4)	3909000	90.00	265060 W.V	100 miles	F1 (84 A C)	100 MM 0	W W 3
All Vehicle	s	439	32.1	0.217	3.9	Not Applicable	10	0.12	0.21	84.6

Symbols which may appear in this table:

Following Degree of Saturation # x = 1.00 for Short Lane with resulting Excess Flow * x = 1.00 due to minimum capacity

Following LOS # - Based on density for continuous movements

Following Queue
- Density for continuous movement

Site: 2009 Base+Dev PM D:\Modelling\FJF\09-April-Sidra\20100115-revise\SH17 and MR89.eap Processed Jan 15, 2010 12:23:59AM

	- 400 VIII - 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	22.5		-N H -N H -2 H	7,570 A 7,570 A 7,570 A	~####### V 3	20 20 E	JF JF 0	22 3 22 3	
		22.0	70 70 M H		2222			20.000	20.0	
STATE OF THE STATE OF THE	TALBURATURE OF STREET, JULY	and the second second	2.22.2	23/0	2 2 2 2 2 2		20.00	20.20	22.2	

Tomingley Gold Project Report No. 616/06

SIDRA INTERSECTION

Movement Summary

SH17 and MR89

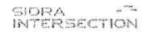
2009 Base+Dev AM

Vehicle Movements

Mov ID	Turn	Dem Flow (veh/h)	%HV	Deg of Satn (v/c)	Aver Delay (sec)	Level of Service	95% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
		20020	10.0000	and contact				A	and the second second	K - 10 K - 10 K
SH17 - So	uth	0.00	10230				772		27.00	
1	L	47	29.8	0.031	9.3	LOS A	0	0.00	0.67	49.0
2	T	158	32.9	0.098	0.0	LOS A	0	0.00	0.00	60.0
Approach		205	32.2	0.098	2.1	LOS A		0.00	0.15	57.1
SH17 - No	orth									
8	T	158	32.9	0.098	0.0	LOS A	0	0.00	0.00	60.0
9	R	47	29.8	0.056	11.3	LOS A	2	0.39	0.69	46.8
Approach		205	32.2	0.098	2.6	LOS A	2	0.09	0.16	56.4
						4		0.000.000	5 50 65	10 100.00
MR89 - W	est									
10	L	11	30.0	0.073	16.6	LOS B	3	0.54	0.69	42.0
12	R	16	31.2	0.073	16.8	LOS B	3	0.54	0.85	41.9
Approach		26	30.8	0.073	16.7	LOS B	3	0.54	0.79	41.9
All Vehicle	es	436	32.1	0.098	3.2	Not Applicable	3	0.07	0.19	55.6

Symbols which may appear in this table:

Following Degree of Saturation # x = 1.00 for Short Lane with resulting Excess Flow * x = 1.00 due to minimum capacity


Following LOS # - Based on density for continuous movements

Following Queue
- Density for continuous movement

SIDRA SOLUTIONS

Site: 2009 Base+Dev AM
D:\Modelling\FJF\09-April-Sidra\20100115-revise\SH17 and MR89.aap
Processed Jan 15, 2010 12:23:58AM

							20.2224		
CO. Con. and Co.									
	-0.8	27.70 / 64	_000 Johnson 18.	22:44	J. 22 10 10	-	20.20.0	27.200	10 2 114
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5									
A STORE SHOWER	CONTRACTOR OF THE CONTRACTOR								
Tarichi, Silchemer				~~~~		~45.0000m			-v6500/900-
Taring Steel							27.202	20.000	
inger egere.	Accepted to		-2009005	-groundring-	*****				
ing and the second of the seco	- ASSESSED - SECOND -	20.0	2000	-200 Marin 19-	1200	- 44	20 20 M	20, 20,00	22.5
and day such a	- Anno 191 - Anno 191 - Anno 191 - Anno 191 - Anno 191	24.5	20.000	22.0	7 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	- 44	-07 -03 ex	2012046	20 at 10

Movement Summary

SH17 and MR89

2009 Base

Give-way

Vehicle Movements

Mov ID	Turn	Dem Flow (veh/h)	%HV	Deg of Satn (v/c)	Aver Delay (sec)	Level of Service	95% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
696.312.00	2000					Sec. 1999 1996	er lighte	699 C S	\$100mm 1000mm (\$1000mm)	
SH17 - So	uth									
1	L	16	31.2	0.011	9.3	LOS A	0	0.00	0.67	49.0
2	T	158	32.9	0.098	0.0	LOS A	0	0.00	0.00	60.0
Approach		174	32.8	0.098	0.9	LOS A		0.00	0.06	58.8
SH17 - No	rth			7507 30						100 10 10
8	3	158	32.9	0.098	0.0	LOS A	0	0.00	0.00	60.0
9	R	11	30.0	0.011	11.0	LOS A	0	0.35	0.65	47.2
Approach		168	32.7	0.098	0.7	LOS A	0	0.02	0.04	59.1
MR89 - W	est				Se Section 1				reger turns	12.000000000000000000000000000000000000
10	L	11	30.0	0.065	15.2	LOS B	3	0.50	0.67	43.2
12	R	16	31.2	0.065	15.4	LOS B	3	0.50	0.81	43.0
Approach		26	30.8	0.065	15.4	LOS B	3	0.50	0.76	43.1
All Histories esternis	G 4903	A100117 0.4	i bernera	FID 0000 1 20	and the same					
All Vehicle	:9	368	32.6	0.098	1.8	Not Applicable	3	0.05	0.10	57.4

Symbols which may appear in this table:

Following Degree of Saturation # x = 1.00 for Short Lane with resulting Excess Flow * x = 1.00 due to minimum capacity

Following LOS

- Based on density for continuous movements

Following Queue # - Density for continuous movement

FIORA SOLUTIONS

Site: 2009 Base
D:\Modelling\FJF\09-April-Sidra\20100115-revise\SH17 and MR89.aap
Processed Jan 15, 2010 12:23:58AM

Tomingley Gold Project Report No. 616/06

SIDRA ---INTERSECTION

Movement Summary

MR89 and Tomingley West Road

2017 Base+Sen PM Tomingley

Vehicle Movements

Mov ID	Turn	Dem Flow (veh/h)	%HV	Deg of Satn (v/c)	Aver Delay (sec)	Level of Service	95% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
Tomingle		bood								11.1040401
1	L	4	40.0	0.200	11.2	LOS A	11	0.30	0.59	47.3
3	R	109	40.0	0.200	11.7	LOS A	11	0.30	0.68	46.9
Approach		115	40.0	0.199	11.6	LOSA	11	0.30	0.67	47.0
MR89 - Ea	st									***
4	L	4	0.0	0.021	8.2	LOS A	0	0.00	0.67	49.0
5	T	32	29.0	0.021	0.0	LOS A	0	0.00	0.00	60.0
Approach		35	25.7	0.021	0.9	LOSA		0.00	0.08	58.5
A			771 18 1718							× 34 34000
MR89 - W	est									
11	T	32	29.0	0.022	0.1	LOS A	1	0.12	0.00	58.3
12	R	4	0.0	0.022	8.6	LOS A	1	0.12	0.65	48.1
Approach		35	25.7	0.022	1.1	LOS A	1	0.12	0.07	56.9
All Vehicle	os	185	34.6	0.200	7.6	Not Applicable	11	0.21	0.45	50.5

Symbols which may appear in this table:

Following Degree of Saturation # x = 1.00 for Short Lane with resulting Excess Flow # x = 1.00 due to minimum capacity

Following LOS
- Based on density for continuous movements

Following Queue
- Density for continuous movement

SIDRA SOLUTIONS

Site: 2017 Base+Sen PM Tomingley D:\Modelling\FJF\09-April-Sidra\20100115-revise\MR89 and Tomingley West.aap Processed Jan 15, 2010 12:29:36AM

				20.00	1000 0	-800-		-0.00	
						***			-webosynous
CORPORATION CONTRACTOR	Contract and Child and Contract of the								
STREET, STREET	MALE CACCAGE AND ARRIVE		2000						
	COMMUNICIPAL DRIVE, CANADA	management of the second							
200	2.000	20.0	20.00	-36 34 2 2 4	2220		30 3810	20.00	22.0
	- ADDITION		**************************************	-monore-	200000000000000000000000000000000000000	~35 (50)2~~			-weecenew.

Tomingley Gold Project Report No. 616/06

SIDRA --INTERSECTION

Movement Summary

MR89 and Tomingley West Road

2017 Base+Sen AM Tomingley

Give-way

Vehicle Movements

Mov ID	Turn	Dem Flow (veh/h)	%ну	Deg of Satn (v/c)	Aver Delay (sec)	Level of Service	95% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
		9 305 35	10 1000	STREET		2017 B S 12 5		460 or 16 (640)		
Tomingle	y West R	oad								
1	L	4	40.0	0.016	11.1	LOS A	1	0.28	0.60	47.4
3	R	4	40.0	0.016	11.5	LOS A	1	0.28	0.67	47.1
Approach		10	40.0	0.016	11.3	LOS A	1	0.28	0.64	47.2
MR89 - Ea		***************************************	er je ja sastojal iz is			CH40.1 (H)40.14		March 200 (0)		1202
4	L	109	0.0	0.078	8.2	LOS A	0	0.00	0.67	49.0
5	T	32	29.0	0.078	0.0	LOS A	0	0.00	0.00	60.0
Approach		140	6.4	0.078	6.4	LOS A		0.00	0.52	51.0
MR89 - W	est			4.44.730.000	ander galactica		20,70,700	400 0000	700 5 7	2000000
11	T	32	29.0	0.022	0.5	LOS A	- 10	0.25	0.00	56.6
12	R	4	0.0	0.022	9.0	LOS A	1	0.25	0.64	47.6
Approach		35	25.7	0.022	1.5	LOS A	1	0.25	0.07	55.4
1 1000	6 94000		SOLUTION NO.	3.00	2000 500	(1 × 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	F385 3(900)		100 m	4 4 14
All Vehicle	es	185	11.9	0.078	5.7	Not Applicable	1	0.06	0.44	51.6

Symbols which may appear in this table:

Following Degree of Saturation # x = 1.00 for Short Lane with resulting Excess Flow * x = 1.00 due to minimum capacity

Following LOS

- Based on density for continuous movements

Following Queue # - Density for continuous movement

SIORA SOLUTIONS

Site: 2017 Base+Sen AM Tomingley D:\Modelling\FJF\09-April-Sidra\20100115-revise\MR89 and Tomingley West-aap Processed Jan 15, 2010 12:29:36AM

188 188 188		2000 2000 2000 2000 2000 2000 2000 200	2000 2000 2000 2000	2200 A 2200 A 2200 B	 20 20 20 20 20 20 20 20 20 20 20 20 20 2	2.20 2.20 2.20	28:0 28:0 28:0 22:0
	27 H 27 H 28 H	2000	2 2 3 2 3 2 3 8	2000 0	 20 2000 20 2000 20 2000 20 2000	20 20 4 20 20 4 20 20 4	20.0 20.0 20.0

Tomingley Gold Project Report No. 616/06

SIDRA INTERSECTION

Movement Summary

MR89 and Tomingley West Road

2017 Base+Sen PM Narromine

Give-way

Vehicle Movements

Mov ID	Turn	Dem Flow (veh/h)	%HV	Deg of Satn (v/c)	Aver Delay (sec)	Level of Service	95% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
6.5 × 8(%) × 100	(4)	Y 100 100	9.00	* * * * * * * * * * * * * * * * * * * *	20.00	1.30 K (40) F	200		No. 1 Mar. 1 (10) 16 (10) 100 (10)	
Tomingley	West R	toad								
1	L	109	40.0	0.139	10.1	LOS A	7	0.16	0.63	48.3
3	R	4	40.0	0.139	10.5	LOS A	7	0.16	0.69	48.0
Approach		115	40.0	0.139	10.1	LOS A	7	0.16	0.63	48.2
MR89 - Ea	st									
4	L	4	0.0	0.021	8.2	LOS A	0	0.00	0.67	49.0
5	T	32	29.0	0.021	0.0	LOS A	0	0.00	0.00	60.0
Approach		35	25.7	0.021	0.9	LOS A		0.00	0.08	58.5
MR89 - W	est									
11	T	32	29.0	0.022	0.1	LOS A	1	0.12	0.00	58.3
12	R	4	0.0	0.022	8.6	LOS A	1	0.12	0.65	48.1
Approach		35	25.7	0.022	1.1	LOS A	1	0.12	0.07	56.9
100 10		CHC W	AC 9000	00.000 11.000	00' 10' 10'	30 30 101 3 4				
All Vehicle	es	185	34.6	0.139	6.7	Applicable	7	0.12	0.42	51.4

Symbols which may appear in this table:

Following Degree of Saturation # x = 1.00 for Short Lane with resulting Excess Flow * x = 1.00 due to minimum capacity

Following LOS # - Based on density for continuous movements

Following Queue
- Density for continuous movement

SIDION SOLUTIONS

Site: 2017 Base+Sen PM Narromine
D:\Modelling\FJF\09-April-Sidra\20100115-revise\MR89 and Tomingley West.aap
Processed Jan 15, 2010 12:29:35AM

		-97 SE - SE							
market a second of									
manage francisco		200.00	20.0000		7 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	-	20.20.3	20.00	
	COMMUNICIAN DESK. June								
EDUCATION OF THE PROPERTY OF	CONTRACTOR OF THE PARTY								
	40000000		*240 MAGC*	~~~	200000000000000000000000000000000000000				
	AD001010		20.000	27.10	2400 0	~850000	42.404	- C - C - C - C - C - C - C - C - C - C	-4000 Person
	- AD00700								
	2 A S	32.5	27.37.00	22.42	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- 44	20 20 M	20.3046	2020 10
======================================	2 2 2 2 2 2 2 2 2 3 2	20.0	2012/2012	22.42	2222 2	- 44	- P CO C.	2012094	AP-027 - EG

Tomingley Gold Project Report No. 616/06

SIDRA INTERSECTION

Movement Summary

MR89 and Tomingley West Road

2017 Base+Sen AM Narromine

Give-way

Vehicle Movements

Mov ID	Turn	Dem Flow (veh/h)	%HV	Deg of Satn (v/c)	Aver Delay (sec)	Level of Service	95% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
Tomingle	West R									
1	L	4	40.0	0.017	11.4	LOS A	1	0.19	0.60	47.1
3	R	4	40.0	0.017	11.8	LOS A	1	0.19	0.69	46.8
Approach		10	40.0	0.017	11.6	LOS A	1	0.19	0.65	46.9
MR89 - Ea	st				3444					104 ESERTO
4	L	4	0.0	0.021	8.2	LOS A	0	0.00	0.67	49.0
5	T	32	29.0	0.021	0.0	LOS A	D	0.00	0.00	60.0
Approach		35	25.7	0.021	0.9	LOS A		0.00	0.08	58.5
MR89 - W	ant.	EXTRA PERMITTER	1 040 8168	500 H	19645 (91)		atities a section	salouna in chia	.5442.4473.447	
11	T	32	29.0	0.097	0.2	LOS A	4	0.12	0.00	20.0
12	R	109	0.0	0.097	8.6	LOS A	- 4	0.13	0.00	58.3
Approach		140	6.4	0.098	6.7	LOS A	4	0.13	0.65	48.1 50.1
11.44 (11.1 (10.4					. 24		J.,		(100 miles)	
All Vehicle	es	185	11.9	0.099	5,9	Not Applicable	4	0.11	0.43	51.3

Symbols which may appear in this table:

Following Degree of Saturation # x = 1.00 for Short Lane with resulting Excess Flow * x = 1.00 due to minimum capacity

Following LOS

- Based on density for continuous movements

Pollowing Queue # ~ Density for continuous movement

SHORA SOLUTIONS

Site: 2017 Dase+Sen AM Narromine D:\Modelling\FJF\09-April-Sidra\20100115-revise\MR89 and Tomingley West.aap Processed Jan 15, 2010 12:29:35AM

- 400004 - 400 - 41 - 41	and a region of the same	N. 2.1 H	77.5 77.5	2200 S	 20 20 10 20 20 20 20 20 20 20 20 20 20 20 20 20	20 20 20 20 20 20 20 20 20 20 20 20 20 2	28 W	
	72 S 72 S 73 S	-0.000 H	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2300 S	 30 3000 30 3000 30 3000	30 30 d 30 30 d 30 30 d	20.0 20.0 20.5 21.2	

Movement Summary

MR89 and Tomingley West Road

2017 Base+ Dev PM

Give-way

Vehicle Movements

Mov ID	Turn	Dem Flow (veh/h)	%HV	Deg of Satn (v/c)	Aver Delay (sec)	Level of Service	95% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
Tomingley	West R	toad								
1	L	39	41.0	0.179	10.8	LOS A	9	0.23	0.61	47.7
3	R	75	40.0	0.179	11.3	LOS A	9	0.23	0.68	47.3
Approach		114	40.4	0.179	11.1	LOS A	9	0.23	0.66	47.5
MR89 - Ea	st						m 1m2 - 1	1.00	3000 30 10	
4	L	4	0.0	0.021	8.2	LOS A	0	0.00	0.67	49.0
5	T	32	29.0	0.021	0.0	LOS A	0	0.00	0.00	60.0
Approach		35	25.7	0.021	0.9	LOS A		0.00	0.08	58.5
MR89 - W		and the second species								
11	T	32	29.0	0.022	0.1	LOS A		0.13	A 00	F0.0
12	R	4	0.0	0.022	8.6			0.12	0.00	58.3
***						LOS A	1	0.12	0.65	48.1
Approach		35	25.7	0.022	1.1	LOS A		0.12	0.07	56.9
All Vehicle	is	184	34.8	0.179	7.3	Not Applicable	9	0.17	0.44	50.9

Symbols which may appear in this table:

Following Degree of Saturation # x = 1.00 for Short Lane with resulting Excess Flow * x = 1.00 due to minimum capacity

Following LOS
- Based on density for continuous movements

Following Queue
- Density for continuous movement

SIDRA SOLUTIONS

Site: 2017 Base+ Dev PM D:\Modelling\FJF\09-April-Sidra\20100115-revise\MR89 and Tomingley West.aap Processed Jan 15, 2010 12:29:35AM

A0450, RTA NSW, Large Office

Produced by SIDRA Intersection 3.2.2.1563
Copyright @2000-2008 Akcelik and Associates Pty Ltd

www.sidrasolutions.com

	KD09765		2404040	~~~	The second second				~*C00000000-
	→ 20.52	-27.00	-0.5 -0.5 (do 40)	22.42	2.5000 00	-	200 200 200	201200	40.00
The second second	2.22	-20:0	JUN 20030136	1.00	2.2000 30		201 20100	2012/08/09	-37-36 TW
79		10.00	-07 -07-07-04	27.2 . 16	2.470.00	2.3	20, 2020	207 - 107 - 107	-22.00

Movement Summary

MR89 and Tomingley West Road

2017 Base+Dev AM

Give-way

Vehicle Movements

Mov ID	Turn	Dem Flow (veh/h)	%HV	Deg of Satn (v/c)	Aver Delay (sec)	Level of Service	95% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
		100020 2002	W. IV. 40364	To represent	1,3100, 100	had been a remark to	THE RESERVE OF THE PERSON NAMED IN		2000 DAN 50	(mark) (d
Tomingley			10000	0.000	3222	1022211	100	12/22/2	627522	0000
1	L	4	40.0	0.016	11.2	LOS A	1	0.26	0.60	47.3
3	R	4	40.0	0.016	11.6	LOS A	- 1	0.26	0.68	47.0
Approach		10	40.0	0.016	11.4	LOS A	1	0.26	0.64	47.1
MR89 - Ea	st			entinents of	0.000.00	20-11-277777	777 - 776 7	100		
4	L.	75	0.0	0.059	8.2	LOS A	0	0.00	0.67	49.0
5	T	32	29.0	0.059	0.0	LOS A	0	0.00	0.00	60.0
Approach		106	8.5	0.059	5.8	LOS A		0.00	0.47	51.7
rapide (Alberta	65361.3	E SE 25 (95.5	898 R	5850806 33	8 7 8 80		e 30 7 100 100	267 M.M. MI	annen e e	0.404.00
MR89 - W	est									
11	T	32	29.0	0.049	0.4	LOS A	2	0.21	0.00	57.1
12	R	39	0.0	0.049	8.9	LOS A	2	0.21	0.64	47.8
Approach		70	12.9	0.049	5.1	LOS A	2	0.21	0.36	51.5
All Vehicle	15	186	11.0	0.059	5.0	Not Applicable	2	0.09	0.44	51.4

Symbols which may appear in this table:

Following Degree of Saturation * x = 1.00 for Short Lane with resulting Excess Flow
* x = 1.00 due to minimum capacity

Following LOS

- Based on density for continuous movements

Following Queue # - Density for continuous movement

STORA SOLUTIONS

Site: 2017 Base+Dev AM D:\Modelling\FJF\09-April-Sidra\20100115-revise\MR89 and Tomingley West.aap Processed Jan 15, 2010 12:29:34AM

OF STREET PARTY AND ADDRESS.									
			** 2**********************************	A CONTRACTOR OF	Name and Associated to the Control of the Control o			THE STREET	- well-controlled
21125		- NP 100 - TAX	-50° -30° -8 -100	207 143	2220 10		20.000	20.00	-07-20 152
	-2.2536	100000	ACC 101 A 28	-26:34	A 4000 M	~	201-2010	200 200 000	-05'06': 56
	-0.4	20.00.00	JUL 20100 III	22.0	A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	- 1	20.20.0	27.200	22.14

Tomingley Gold Project Report No. 616/06

SIDRA INTERSECTION

Movement Summary

MR89 and Tomingley West Road

2017 Base

Give-way

Vehicle Movements

Mov ID	Turn	Dem Flow (veh/h)	%H V	Deg of Satn (v/c)	Aver Delay (sec)	Level of Service	95% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
Tomingley	west R	toad								
1	L	4	40.0	0.015	10.5	LOS A	1	0.18	0.61	48.1
3	R	4	40.0	0.015	10.9	LOS A	1	0.18	0.66	47.8
Approach		10	40.0	0.015	10.7	LOS A	1	0.18	0.64	47.9
								Miles 2 5000		** . ***
MRS9 - Ea	st									
4	L	4	0.0	0.021	8.2	LOS A	0	0.00	0.67	49.0
5	T	32	29.0	0.021	0.0	LOS A	0	0.00	0.00	60.0
Approach		35	25.7	0.021	0.9	LOS A		0.00	0.08	58.5
m. m		40.000	No. 1 (10) 11						081 15585	
MR89 - W	est									
11	T	32	29.0	0.022	0.1	LOS A	1	0.12	0.00	58.3
12	R	4	0.0	0.022	8.6	LOS A	1	0.12	0.65	48.1
Approach		35	25.7	0.022	1.1	LOS A	1	0.12	0.07	56.9
All Vehicle	05	80	27.5	0.022	2.2	Not Applicable	1	0.08	0.15	56.3

Symbols which may appear in this table:

Following Degree of Saturation #x = 1.00 for Short Lane with resulting Excess Flow #x = 1.00 due to minimum capacity

Following LOS # - Based on density for continuous movements

Following Queue

- Density for continuous movement

SIDRA SOLUTIONS

Site: 2017 Base D:\Madeling\FJF\09-April-Sidra\20100115-revise\MR89 and Tomingley West.aap Processed Jan 15, 2010 12:29:34AM

A0450, RTA NSW, Large Office Produced by SIDRA Intersection 3.2.2.1563 Copyright ⊗2000-2008 Akcelik and Associates Pty Ltd www.sidrasolutions.com

27.00 January 46 27.10 January 46 27.10 January 48 20 20 A

Tomingley Gold Project Report No. 616/06

SIDRA INTERSECTION

Movement Summary

MR89 and Tomingley West Road

2009 Base+Sen PM Tomingley

Give-way

Vehicle Movements

Mov ID	Turn	Dem Flow (veh/h)	%н۷	Deg of Satn (v/c)	Aver Delay (sec)	Level of Service	95% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
Tomingley	West R	oad	in Marino		in charges	115 . TO THEFT				.0. 650000
1	L	3	33.3	0.188	11.0	LOS A	10	0.27	0.59	47.5
3	R	108	39.8	0.188	11.4	LOS A	10	0.27	0.67	47.2
Approach		111	39.6	0.188	11.4	LOS A	10	0.27	0.67	47.2
MR89 - Ea		(m. minorino) (man)	100000	40.000.000.000.00		ent. en transmissi	Carlotta estado - Sonto	190		F 582-2-544
4	L	3	0.0	0.018	8.2	LOS A	0	0.00	0.67	49.0
5	T	26	30.8	0.018	0.0	LOS A	0	0.00	0.00	60.0
Approach		29	27.6	0.018	0.8	LOS A		0.00	0.07	58.6
MR89 - W	est			*******	777777 E	:28 - 5/59 (5)			50 35 34 550	t tomotor
11	T	26	30.8	0.018	0.1	LOS A	1	0.11	0.00	58.5
12	P.	3	0.0	0.018	8.6	LOS A	1	0.11	0.65	48.2
Approach		29	27.6	0.018	1.0	LOS A	1	0.11	0.07	57.2
26.	ext miles in	Article (section in	75 696	C+34-038031	4 99 90	Poran Karibacadae		9.544(0)	W 0 0	av danne
All Vehicle	es	169	35.5	0.188	7.8	Not Applicable	10	0.20	0.46	50.4

Symbols which may appear in this table:

Following Degree of Saturation

x = 1.00 for Short Lane with resulting Excess Flow * x = 1.00 due to minimum capacity

Following LOS # - Based on density for continuous movements

Following Queue # - Density for continuous movement

STORA SOLUTIONS

Site: 2009 Base+Sen PM Tomingley D:\Modelling\FJF\09-April-Sidra\20100115-revise\MR89 and Tomingley West.aap Processed Jan 15, 2010 12:29:33AM

			24055-05	ALCOHOL:		~ 15 (50)			-weersteam.
DIVIS-THE TAIL		AP 100 - Tax	-00 - 00 A 100	20.40	2220 10		20.2000	20.000	AP 400 TO
	-2.2636	-0.00	- No. of the last	-26:34	2.2000 30	~	2012	200-240-00	-TP-248 - THE
A11 - O - 11 - 11 - 11 - 11 - 11 - 11 -	-0.1	27.78 . 14	JV JV 68 4.	22.0	A 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- 1	20 20 2	27.46 0	22:3
	CONTRACTOR SALES	receive a region from the first							
The second secon									
						will find the			
					-				
			20000		2000			AV 100-40	20.00.00
Salata Sa	120 - 120 - 1	22.5	2000	- W 10	2222		200 20000	30 30 3	JULIU 10
	1 P A 2 A A A A A A A A A A A A A A A A A	22 H	20000		2000		-0.000 -0.000 -0.000 -0.000	AV 100-40	20.00.00

Tomingley Gold Project Report No. 616/06

Movement Summary

MR89 and Tomingley West Road

2009 Base+Sen AM Tomingley

Give-way

Vehicle Movements

Mov ID	Turn	Dem Flow (veh/h)	%HV	Deg of Satn (v/c)	Aver Delay (sec)	Level of Service	95% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
Yomiaala	Wort D	end.	m () () () ()			(1000)00 10 1 100	100 mm		100 TO 10 TO 100 TO 100	******
Tomingle	A MG2C K		22.2	0.000	100	100 4	0	0.26	0.60	47.7
1	-	3	33.3	0.009	10.8	LOS A	0	0.25	0.60	47.7
3	R	3	33.3	0.009	11.2	LOS A	0	0.25	0.65	47.4
Approach		6	33.3	0.009	11.0	LOS A	0	0.25	0.63	47.6
MR89 - E	ist									
4	L	108	0.0	0.074	8.2	LOS A	0	0.00	0.67	49.0
5	T	26	30.8	0.074	0.0	LOS A	0	0.00	0.00	60.0
Approach		134	6.0	0.074	6.6	LOS A		0.00	0.54	50.8
MR89 - W	est									
11	T	26	30.8	0.018	0.5	LOS A	1	0.24	0.00	56.7
12	R	3	0.0	0.018	8.9	LOS A	1	0.24	0.64	47.7
Approach		29	27.6	0.018	1.4	LOS A	1	0.24	0.07	55.6
All Vehicle	es	169	10.7	0.074	5.9	Not Applicable	1	0.05	0.46	51.4

Symbols which may appear in this table:

Following Degree of Saturation # x = 1.00 for Short Lane with resulting Excess Flow $^* x = 1.00$ due to minimum capacity

Following LOS
- Based on density for continuous movements

Following Queue

- Density for continuous movement

SIDRA SOLUTIONS

Site: 2009 Base+Sen AM Tomingley D:\Modelling\FJF\09-April-Sidra\20100115-revise\MR89 and Tomingley West.aap Processed Jan 15, 2010 12:29:33AM

						and the second lines of			
			2000						
							20.2224		
A CO. Sec. and Property of the Co.									
	-0.4	20.00.00	JUL 20100 IS	200	A 44 4 44	- 18	20.000	27.40	10 2 10
	COMPANY OF THE CHIEF COMPANY	The second second second							
SUBSECULAR SALES SALES	CONTRACTOR WITHOUT								
A STATE OF THE SAME OF THE SAM	CONTRACTOR OF THE OWNER,								
	00.00.00								
	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
	3 2 7 7 7 7								
	- Koosass		2000005		Surgery to the coast	~8000~			_+000000000
	- Managemen	24.5	20000		2000 0	-	-07 -10 cm	2012046	40.001.00
	- ADDRESS	20.0	2000	20.40		-	20 20 M	20, 20,00	2000 E
	- According	24.5	20000		2000 0		-07 -10 cm	2012046	40.001.00

Movement Summary

MR89 and Tomingley West Road

2009 Base+Sen PM Narromine

Vehicle Movements

Mov ID	Turn	Dem Flow (veh/h)	% HV	Deg of Satn (v/c)	Aver Delay (sec)	Level of Service	95% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
200 50000	90 72 655.41	110000 ×	38.8.8		94 888 W. O			2000		3099 205
Tomingle	West R	load								
1	L	108	39.8	0.132	10.0	LOS A	6	0.14	0.63	48.3
3	R	3	33.3	0.130	10.4	LOS A	6	0.14	0.68	48.1
Approach		111	39.6	0.132	10.0	LOS A	6	0.14	0.63	48.3
MR89 - Ed	st	14. 36.5 \$40.5 - 36.00-2-1			You have the wine	on a trace of		* 570 7	1685 W. C. C.	
4	L	3	0.0	810.0	8.2	LOS A	0	0.00	0.67	49.0
5	T	26	30.8	0.018	0.0	LOS A	0	0.00	0.00	60.0
Approach		29	27.6	0.018	8.0	LOS A		0.00	0.07	58.6
MR89 - W	est					MARKET STORY FOR		30,4004 30	n	
11	т	26	30.8	0.018	0.1	LOS A	1	0.11	0.00	58.5
12	R	3	0.0	0.018	0.6	LOS A	1	0.11	0.65	46.2
Approach		29	27.6	0.018	1.0	LOS A	1	0.11	0.07	57.2
All Vehicle	16	169	35.5	0.132	6.9	Not Applicable	6	0.11	0.44	51.2

Symbols which may appear in this table:

Following Degree of Saturation # x = 1.00 for Short Lane with resulting Excess Flow * x = 1.00 due to minimum capacity

Following LOS # - Based on density for continuous movements

Following Queue
- Density for continuous movement

SIDRA SULUTIONS

Site: 2009 Base+Sen PM Narromine D:\Modelling\FJF\(09-April-Sidra\20100115-revise\MR89 and Tomingley West.aap Processed Jan 15, 2010 12:29:33AM

Service Control of the Control of th									
married and a second		- M. De . Tot.	-07 -07 A 10	49.40	2220 10		20. 22.00	200 200 400	47.49 154
Birch Silver	-2.2536	- P. OF . 173	AND 187 A 28	-26:34	2.000	~	201-2010	200, 240,040	-05'06': 56
	-0.2	28.38 96	JUL 20100 III	22.0	2.000 10	- 16	20.20.0	27.400	22.14

Tomingley Gold Project Report No. 616/06

SIDRA INTERSECTION

Movement Summary

MR89 and Tomingley West Road

2009 Base+Sen AM Narromine

Give-way

Vehicle Movements

Mov ID	Turn	Dem Flow (veh/h)	%HV	Deg of Satn (v/c)	Aver Delay (sec)	Level of Service	95% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
Tomingley	West R	toad								* 1 ******* 1 **
1	L	3	33.3	0.009	11.1	LOS A	0	0.16	0.61	47.5
3	R	3	33.3	0.009	11.5	LOS A	0	0.16	0.69	47.1
Approach		6	33.3	0.009	11.3	LOS A	0	0.16	0.65	47.3
MR89 - Ea	st									
4	L	3	0.0	0.018	8.2	LOS A	0	0.00	0.67	49.0
5	T	26	30.8	0.018	0.0	LOS A	0	0.00	0.00	60.0
Approach		29	27.6	0.018	0.8	LOS A		0.00	0.07	58.6
							10.000	111100000000000000000000000000000000000		
MR89 - W	est									
11	T	26	30.8	0.094	0.1	LOS A	4	0.11	0.00	58.4
12	R	108	0.0	0.094	8.6	LOS A	4	0.11	0.65	48.2
Approach		134	6.0	0.093	6.9	LOS A	4	0.11	0.53	49.9
All Vehicle	s	169	10.7	0.094	6.0	Not Applicable	4	0.10	0.45	51.1

Symbols which may appear in this table:

Following Degree of Saturation # x=1.00 for Short Lane with resulting Excess Flow * x=1.00 due to minimum capacity

Following LOS
- Based on density for continuous movements

Following Queue
- Density for continuous movement

SIDRA SOLUTIONS

Site: 2009 Base+Sen AM Narromine D:\Modelling\FJF\09-April-Sidra\20100115-revise\MR89 and Tomingley West aap Processed Jan 15, 2010 12:29:33AM

				20.00	2000 0	-800-	2.00	20.000	
300000 C4945 3650 9654 6650									
CONTRACT PROFESSION	Charles and the control of the contr								
	NORMALISM DESCRIPTION	The second second second							
	-2.NX	24.6	201 25 A 26 201 201 00 00	20.00	2220 0	×	30.3810	20 20 10	JF 34 - 14 JF 2 - 16
		-P. Nr. 100	- Department	450000					
			-34045-A-	-Factories-		~45 (90)2~			. 40000000

Tomingley Gold Project Report No. 616/06

Movement Summary

MR89 and Tomingley West Road

2009 Base+ Dev PM

Give-way

Vehicle Movements

Mov ID	Turn	Dem Flow (veh/h)	%HV	Deg of Satn (v/c)	Aver Delay (sec)	Level of Service	95% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
Tomingley	/ West R	load						AUG 1,5101		
1	L.	38	39.5	0.170	10.6	LOS A	9	0.21	0.51	47.9
3	R	74	39.7	0.169	11.1	LOS A	9	0.21	0.68	47.6
Approach		111	39.6	0.169	10.9	LOS A	9	0.21	0.65	47.7
MR89 - Ea	st						2000	13040446.35	TO CONTRACT OF	
4	L	3	0.0	0.018	8.2	LOS A	0	0.00	0.67	49.0
5	т	26	30.8	0.018	0.0	LOS A	0	0.00	0.00	60.0
Approach		29	27.6	0.018	0.8	LOS A		0.00	0.07	58.6
e kane x	H.H. F. D		(314,000,000)	$\Theta(\mathcal{H}_{\mathcal{F}}^{-1}, \mathcal{H}(\mathcal{F}))$		60 (Pre1990) 1 6 7 10	000000000000000000000000000000000000000	port/apace; 101)	0.00	roes, liste
MR89 - W	est									
11	T	26	30.8	0.018	0.1	LOS A	1	0.11	0.00	58.5
12	R	3	0.0	0.018	8.6	LOS A	1	0.11	0.65	48.2
Approach		29	27.6	0.018	1.0	LOS A	1	0.11	0.07	57.2
All Vehicle	15	169	35.5	0.170	7.5	Not Applicable	9	0.16	0.45	50.8

Symbols which may appear in this table:

Following Degree of Saturation # x = 1.00 for Short Lane with resulting Excess Flow * x = 1.00 due to minimum capacity

Following LOS

- Based on density for continuous movements

Following Queue # - Density for continuous movement

SIDRA SOLUTIONS

Site: 2009 Base+ Dev PM D:\Modelling\FJF\09-April-Sidra\20100115-revise\MR89 and Tomingley West.aap Processed Jan 15, 2010 12:29:32AM

- ## # # # # # # # # # # # # # # # # #		*3400-00* -01-01-01 -01-01-01 -01-01-01	- 2 m	7478 A 7478 A 7478 A	-100002	2.22	27 28 4 5 27 28 4 5	22:5	
- ABB	22 S	7200000 20.30000 20.30000 20.30000	2000 -200 -200	2302 E	***************************************	20 2018 20 2018 20 2018	20 2	210 10 210 10 210 21 21 21	

Tomingley Gold Project Report No. 616/06

SIDRA ---INTERSECTION

Movement Summary

MR89 and Tomingley West Road

2009 Base+Dev AM

Give-way

Vehicle Movements

Mov 1D	Turn	Dem Flow (veh/h)	%н۷	Deg of Satn (v/c)	Aver Delay (sec)	Level of Service	95% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
		KOCKE PK IN		44 (000 (0) 44 (0.0)	A 401-MA 241-MA 1 1 1 M			0.00	* * * *	
Tomingle	y West R		1000			100000				10000
1	L	3	33.3	0.009	10.9	LOS A	0	0.24	0.60	47.6
3	R	3	33.3	0.009	11.3	LOS A	0	0.24	0.66	47.3
Approach		6	33.3	0.009	11.1	LOS A	0	0.24	0.63	47.5
MR89 - E	est									
4	L	74	0.0	0.056	8.2	LOS A	0	0.00	0.67	49.0
5	T	25	30.8	0.056	0.0	LOS A	0	0.00	0.00	60.0
Approach		100	8.0	0.056	6.1	LOS A		0.00	0.49	51.4
				MICH. 10. 10. 11. 10. 10.						
MR89 - W	est									
11	T	26	30.8	0.045	0.4	LOS A	2	0.21	0.00	57.2
12	R	38	0.0	0.045	8.8	LOS A	2	0.21	0.64	47.8
Approach		64	12.5	0.045	5.4	LOS A	2	0.21	0.38	51.3
All Vehicle	es	170	10.6	0.056	6.0	Not Applicable	2	0.09	0.46	51.2

Symbols which may appear in this table:

Following Degree of Saturation # x = 1.00 for Short Lane with resulting Excess Flow * x = 1.00 due to minimum capacity

Following LOS
- Based on density for continuous movements

Following Queue
- Density for continuous movement

STORA SOLUTIONS

Site: 2009 Base+Dev AM
D:\Modelling\FJF\09-April-Sidra\20100115-revise\MR89 and Tomingley West.aap
Processed Jan 15, 2010 12:29:32AM

							20.2224		
AND DECKE TO SERVICE THE PARTY OF THE PARTY									
and the same of th	-0.8	27.70 / 64	_000 Johnson 18.	22:44	J. 22 10 10	-	20.20.0	27.200	10 2 10
The second secon									
CONTRACT AND CONTRACT									
Saraha Sarahan	CONTRACTOR OF THE CONTRACTOR								
ikasihi. Silohamei				~~~~		~45.0000m			-v6500/940r-
And Child Sales Annual							27.202	20.000	
i de la composition de la composition La composition de la	Accepted to		-2009005	-groundring-	*****				- ACTION (MODE)
	- ASSESSED - SECOND -	20.0	2000	-200 Marin 19-	1200	- 44	20 20 M	20, 20,00	22.5
ing and the second	- Anno 191 - Anno 191 - Anno 191 - Anno 191 - Anno 191	24.5	20.000	22.0	7 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	- 44	-07 -03 ex	2012046	2000 100

Movement Summary

MR89 and Tomingley West Road

2009 Base

Give-way

Vehicle Movements

Mov ID	Turn	Dem Flow (veh/h)	%ну	Deg of Satn (v/c)	Aver Delay (sec)	Level of Service	95% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
Tomingley	West R	toad	nacional agraphic	************		14, 14, 14, 14, 17, 18	A-14 7 NAVISO	100000000000000000000000000000000000000	Checken derivati	
1	L	3	33.3	0.008	10.2	LOS A	0	0.16	0.61	48.3
3	R	3	33.3	0.008	10.7	LOS A	0	0.16	0.66	48.0
Approach		6	33.3	0.008	10.5	LOS A	0	0.16	0.63	48.1
MR89 - Ea	st	n regalije e	an messeu				THE CONTRACTOR	백 경 함께	50 Y57W3 -60	10000000
4	L	3	0.0	0.018	8.2	LOS A	0	0.00	0.67	49.0
5	T	26	30.8	0.018	0.0	LOS A	0	0.00	0.00	60.0
Approach		29	27.6	0.018	0.8	LOS A	anament series	0.00	0.07	58.6
MR89 - W	est	ence in a sometime		October 14 contrates			400.105.914.0			
11	T	26	30.8	0.018	0.1	LOS A	1	0.11	0.00	58.5
12	R	3	0.0	0.018	8.6	LOS A	1	0.11	0.65	48.2
Approach		29	27.6	0.018	1.0	LOS A	1	0.11	0.07	57.2
00 00 m 0	100 100 100 100	1000	5 75.5%				3 3 5 5 7			
All Vehicle	s	64	28.1	0.018	1.8	Applicable Not	1	0.06	0.12	56.8

Symbols which may appear in this table:

Following Degree of Saturation # x = 1.00 for Short Lane with resulting Excess Flow # x = 1.00 due to minimum capacity

Following LOS

- Based on density for continuous movements

Following Queue
- Density for continuous movement

SIDRASQUUIDNS

Site: 2009 Base
D:\Modelling\FJF\09-April-Sidra\20100115-revise\MR89 and Tomingley West.aap
Processed Jan 15, 2010 12:29:31AM

- ADD		2000-20 20-2-1-21 20-2-1-21 20-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-	-2.2	2200 E 2200 E	~60000	30 38 B	27.20 27.20 27.20	22 14 22 14	
2 E 4 2 E 4 2 E 4	27 B	2022	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.500 B	~*************************************	20 20 M	N 80 N 814 N 84	20:0 20:0 21:2	